Issue |
MATEC Web of Conferences
Volume 42, 2016
2015 The 3rd International Conference on Control, Mechatronics and Automation (ICCMA 2015)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 6 | |
Section | Automation control theory and Applications | |
DOI | https://doi.org/10.1051/matecconf/20164201003 | |
Published online | 17 February 2016 |
Modelling, Simulation and Controller Design for Hydraulically Actuated Ship Fin Stabilizer Systems
1 Naval Architecture and Marine Engineering, Istanbul Technical University, Turkey
2 Maritime Faculty-Marine Engineering, Istanbul Technical University, Turkey
3 Mechanical Engineering, Istanbul Technical University, Turkey
In general, hydraulic systems that are used for ship fin stabilizers and rudders, are modelled as first or second order of linear equations to obtain only system’s delay and overshoot for controlling purposes. This approach assumes the hydraulic system is well designed and contains no faults. It’s an easy and quick way to focus on control subject. However, limits and capacities of hydraulic components cannot be examined carefully with this approach. Due to this deficiency, expensive over-engineered or inadequate hydraulic systems can be designed. For this reason, an interdisciplinary study was done in Istanbul Technical University. The purpose of the study is to parametrically model hydraulic system of a ship motion reduction active fin stabilizer system with fins, ship roll dynamics and controllers in detail, so every property of the system can be observed in a simulation environment via non-linear equations. With the help of parametric modelling, every component can be changed and resized easily, including the ship, fins, hydraulic components and controllers. Results obtained from simulation are verified with full scale sea trials using a ship named Volcano71.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.