Issue |
MATEC Web Conf.
Volume 108, 2017
2017 International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAA 2017)
|
|
---|---|---|
Article Number | 09006 | |
Number of page(s) | 5 | |
Section | Modern Electronic Information Technology | |
DOI | https://doi.org/10.1051/matecconf/201710809006 | |
Published online | 31 May 2017 |
3D Simulation and Modeling of Ultra-fast 3D Silicon Detectors
1 School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
2 Center for semiconductor Particle and photon Imaging Detector Development and Fabrication, Xiangtan University, Xiangtan, 411105, China
3D detectors with very small electrode spacing can provide ultra-fast detection due to their extremely small charge collection time. Since the detector full depletion voltage and charge collection time are independent to the detector thickness, ultra-fast 3D detectors can be made relatively thick (or not too thin, ~200 μm) to ensure a large signal. The results of the 3D simulations and modeling of 3D silicon detectors with very small electrode spacing and relatively large thickness will be shown in this paper. The column spacing LP is in the range of 5 μm to 10 μm. At a bias voltage of only a few volts, the electric field in the detector can be large enough to ensure the carrier saturation drift velocity in most volume of the detector, and the detector charge collection time there can be as short as 10’s of ps. In this paper, we will analysis the simulated electrical characteristics of this detector structure through systematic 3D simulations using the Silvaco’s TCAD tool. Profiles of detector electric potential and electric field will be presented. We will investigate the region of low electric field (the “slow region”) in the detector. We will also exam whether the detector reach the breakdown condition at operation voltages suggested in this work.
Key words: 3D simulation / Ultra-fast / 3D silicon detector / Electric field
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.