Issue |
MATEC Web Conf.
Volume 78, 2016
2nd International Conference on Green Design and Manufacture 2016 (IConGDM 2016)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/20167801017 | |
Published online | 07 October 2016 |
Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling
1 Centre for Micro and Nano Engineering (CeMNE) College of Engineering, Universiti Tenaga Nasional (UNITEN), 43009 Kajang, Selangor, Malaysia
2 Institute of Microengineering and Nanoelectronics (IMEN) Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
* Corresponding author: faizahz@uniten.edu.my
This paper presents the modeling and optimization of 14nm gate length CMOS transistor which is down-scaled from previous 32nm gate length. High-k metal gate material was used in this research utilizing Hafnium Dioxide (HfO2) as dielectric and Tungsten Silicide (WSi2) and Titanium Silicide (TiSi2) as a metal gate for NMOS and PMOS respectively. The devices are fabricated virtually using ATHENA module and characterized its performance evaluation via ATLAS module; both in Virtual Wafer Fabrication (VWF) of Silvaco TCAD Tools. The devices were then optimized through a process parameters variability using L9 Taguchi Method. There were four process parameter with two noise factor of different values were used to analyze the factor effect. The results show that the optimal value for both transistors are well within ITRS 2013 prediction where VTH and IOFF are 0.236737V and 6.995705nA/um for NMOS device and 0.248635 V and 5.26nA/um for PMOS device respectively.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.