Open Access
Issue |
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
|
|
---|---|---|
Article Number | 08002 | |
Number of page(s) | 9 | |
Section | Concrete Durability 1 | |
DOI | https://doi.org/10.1051/matecconf/202540908002 | |
Published online | 13 June 2025 |
- Aïtcin, P.-C., High Performance Concrete, (CRC Press, 1998). https://doi.org/10.4324/9780203475034 [CrossRef] [Google Scholar]
- B. Persson, Self-desiccation and its importance in concrete technology, Mat. Struct., 30, 293-305 (1997). https://doi.org/10.1007/BF02486354 [CrossRef] [Google Scholar]
- D. P. Bentz and W. J. Weiss, Internal Curing : A 2010 State-of-the-Art Review, (Civil Engineering, 2011) [Google Scholar]
- M. Lokeshwari, B.R. Pavan Bandakli, S.R. Tarun, P. Sachin, and Venkat Kumar, A review on self-curing concrete, Mater. Today, 43, 2259-2264 (2021). https://doi.org/10.1016/j.matpr.2020.12.859 [Google Scholar]
- Y. Gu, E. Mohseni, N. Farzadnia, and K. H. Khayat, An overview of the effect of SAP and LWS as internal curing agents on microstructure and durability of cement-based materials, J. Build. Eng., 95, 109972 (2024). https://doi.org/10.1016/j.jobe.2024.109972 [CrossRef] [Google Scholar]
- X. Ma, J. Liu, and C. Shi, A review on the use of LWA as an internal curing agent of high performance cement-based materials, Constr. Build. Mater., 218, 385–393 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.126. [CrossRef] [Google Scholar]
- B. Zhou, K. Wang, P. C. Taylor, and Y. Gu, Superabsorbent Polymers for Internal Curing Concrete: An Additional Review on Characteristics, Effects, and Applications, Materials, 17, 5462 (2024). https://doi.org/10.3390/ma17225462 [Google Scholar]
- F. Xu, X. Lin, and A. Zhou, Performance of internal curing materials in high-performance concrete: A review, Constr. Build. Mater. 311, 125250 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125250 [CrossRef] [Google Scholar]
- M. Tanyildizi, I. Gokalp, Utilization of pumice as aggregate in the concrete: A state of art, Constr. Build. Mater., 377, 131102 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131102 [CrossRef] [Google Scholar]
- S. Zhutovsky and K. Kovler, Effect of internal curing on durability-related properties of high performance concrete, Cem. Concr. Res. 42,. 20–26 (2012). https://doi.org/10.1016/j.cemconres.2011.07.012 [CrossRef] [Google Scholar]
- K. Liu, R. Yu, Z. Shui, X. Li, X. Ling, W. He, S. Yi, and S. Wu, Effects of pumice-based porous material on hydration characteristics and persistent shrinkage of ultra-high performance concrete (UHPC), Mat., 12 (2018). 10.3390/ma12010011 [Google Scholar]
- K. Liu, R. Yu, Z. Shui, X. Li, C. Guo, B. Yu, and S. Wu, Optimization of autogenous shrinkage and microstructure for Ultra-High Performance Concrete (UHPC) based on appropriate application of porous pumice, Constr. Build. Mater., 214, 369-381 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.089 [CrossRef] [Google Scholar]
- E. Badogiannis and S. Tsivilis, Exploitation of poor Greek kaolins: Durability of metakaolin concrete, Cem. Concr. Comp. 31, 128–133 (2009). https://doi.org/10.1016/j.cemconcomp.2008.11.001 [CrossRef] [Google Scholar]
- J.-R. Weng and W.-C. Liao, Microstructure and shrinkage behavior of high-performance concrete containing supplementary cementitious materials, Constr. Build. Mater. 308, 125045 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125045 [CrossRef] [Google Scholar]
- P. J. P. Gleize, M. Cyr, and G. Escadeillas, Effects of metakaolin on autogenous shrinkage of cement pastes, Cem. Concr. Comp. 29, 80–87 (2007). https://doi.org/10.1016/j.cemconcomp.2006.09.005 [CrossRef] [Google Scholar]
- J. J. Brooks and M. A. M. Johari, Effect of metakaolin on creep and shrinkage of concrete, Cem. Concr. Comp. 23, 495-502 (2001). https://doi.org/10.1016/S0958-9465(00)00095-0 [CrossRef] [Google Scholar]
- A. A. A. Hassan, M. Lachemi, and K. M. A. Hossain, Effect of metakaolin and silica fume on the durability of self-consolidating concrete, Cem. Concr. Comp. 34, 801–807 (2012). https://doi.org/10.1016/j.cemconcomp.2012.02.013 [CrossRef] [Google Scholar]
- K. Mermerdaş, E. Güneyisi, M. Gesoğlu, and T. Özturan, Experimental evaluation and modeling of drying shrinkage behavior of metakaolin and calcined kaolin blended concretes, Constr. Build. Mater. 43, 337–347 (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.047 [CrossRef] [Google Scholar]
- E. Güneyisi, M. Gesoǧlu, and K. Mermerdaş, Improving strength, drying shrinkage, and pore structure of concrete using metakaolin, Mater. Struct. 41, 937–949 (2008). https://doi.org/10.1617/s11527-007-9296-z [CrossRef] [Google Scholar]
- E. Güneyisi, M. Gesoǧlu, S. Karaoǧlu, and K. Mermerdaş, Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes, Constr. Build. Mat. 34, 120–130 (2012). https://doi.org/10.1016/j.conbuildmat.2012.02.01 7 [CrossRef] [Google Scholar]
- S. Kou, C. Poon, and F. Agrela, Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures, Cem. Concr. Comp. 33, 788–795 (2011). https://doi.org/10.1016/j.cemconcomp.2011.05.009 [CrossRef] [Google Scholar]
- M. Valizadeh Kiamahalleh, A. Gholampour, M. Rezaei Shahmirzadi, T. D. Ngo, and T. Ozbakkaloglu, Mechanical, Durability, and Microstructure Assessment of Wastepaper Fiber-Reinforced Concrete Containing Metakaolin, Materials, 17, 2608 (2024). https://doi.org/10.3390/ma17112608 [Google Scholar]
- D. Luo and J. Wei, Early-age shrinkage behavior of cement mixtures regulated with metakaolin-based internal conditioning, Appl. Clay Sci. 261, 107583 (2024). https://doi.org/10.1016/j.clay.2024.107583 [CrossRef] [Google Scholar]
- X. Gao, S. Kawashima, X. Liu, and S. P. Shah, Influence of clays on the shrinkage and cracking tendency of SCC, Cem. Concr. Comp. 34, 478–485 (2012). https://doi.org/10.1016/j.cemconcomp.2012.01.002 [CrossRef] [Google Scholar]
- D. Niknezhad, S. K. Restrained, S. Com-, D. Niknezhad, and S. Kamali-bernard, Restrained shrinkage and cracking tendency of Self-Compacting Concrete incorporating supplementary cementitious materials (SCMs), 34èmes Rencontres de l’AUGC (2016). [Google Scholar]
- ASTM C1761/C1761M-17. Standard Specification for Lightweight Aggregate for Internal Curing of Concrete. ASTM International, 2017. [Google Scholar]
- EN 12350-2. Testing fresh concrete – Part 2: Slump-test. British Standards Institution, 2019. [Google Scholar]
- EN 12350-6. Testing fresh concrete – Part 6: Density. British Standards Institution, 2019. [Google Scholar]
- EN 12350-7. Testing fresh concrete – Part 7: Air content – Pressure methods. British Standards Institution, 2019. [Google Scholar]
- EN 12390-3. Testing hardened concrete – Part 3: Compressive strength of test specimens. British Standards Institution, 2019. [Google Scholar]
- ASTM C157/C157M-17. Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM International, 2017. [Google Scholar]
- ASTM C1581/C1581M-18. Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage. ASTM International, 2018. [Google Scholar]
- I. P. Sfikas, E. G. Badogiannis, and K. G. Trezos, Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin, Constr. Build. Mater. 64, 121–129 (2014), https://doi.org/10.1016/j.conbuildmat.2014.04.04 8 [CrossRef] [Google Scholar]
- P. Lura, Pumice aggregates for internal water curing,137–151 (2005). doi: 10.1617/2912143586.013. [Google Scholar]
- S. Zhutovsky, K. Kovler, and A. Bentur, Efficiency of lightweight aggregates for internal curing of high strength concrete to eliminate autogenous shrinkage, Mater. Struct. 34, 97–101 (2002). https://doi.org/10.1007/BF02482108 [CrossRef] [Google Scholar]
- D. Cusson and T. Hoogeveen, Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking, Cem. Concr. Res. 38, 757–765 (2008). https://doi.org/10.1016/j.cemconres.2008.02.001 [CrossRef] [Google Scholar]
- H. Costa, E. Júlio, and J. Loureno, New approach for shrinkage prediction of high-strength lightweight aggregate concrete, Constr. Build. Mater. 35, 84–91 (2012). https://doi.org/10.1016/j.conbuildmat.2012.02.052 [CrossRef] [Google Scholar]
- S. Zhutovsky and K. Kovler, Effect of internal curing on durability-related properties of high performance concrete, Cem. Concr. Res. 42, 20–26 (2012). https://doi.org/10.1016/j.cemconres.2011.07.012 [CrossRef] [Google Scholar]
- A. Alaskar, M. Alshannag, and M. Higazey, Mechanical properties and durability of high-performance concrete internally cured using lightweight aggregates, Constr. Build. Mater. 288, 122998 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122998 [CrossRef] [Google Scholar]
- R. Henkensiefken, D. Bentz, T. Nantung, and J. Weiss, Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions, Cem. Concr. Comp. 31, 427–437 (2009). https://doi.org/10.1016/j.cemconcomp.2009.04.003. [CrossRef] [Google Scholar]
- D. Shen, Z. Feng, P. Zhu, X. Tang, and G. Jiang, Effect of pre-wetted lightweight aggregates on residual stress development and stress relaxation in restrained concrete ring specimens, Constr. Build. Mater. 258, 119151 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119151 [CrossRef] [Google Scholar]
- J. T. Ding and Z. Li, Effects of metakaolin and silica fume on properties of concrete, ACI Mater. J. 99, 393–398 (2002), doi: 10.14359/12222. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.