Open Access
Issue
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
Article Number 08001
Number of page(s) 12
Section Concrete Durability 1
DOI https://doi.org/10.1051/matecconf/202540908001
Published online 13 June 2025
  1. ACI, “ACI PRC-209.2-08 Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete”. American Concrete Institute (ACI): Farmington Hills, MI, 2008. [Google Scholar]
  2. Jensen, O. M. & Hansen, P. F., “Water-entrained cement-based materials: I. Principles and theoretical background”. Cement and Concrete Research, vol. 31, (4), pp. 647-654, 2001. https://doi.org/10.1016/S0008-8846(01)00463-X. [CrossRef] [Google Scholar]
  3. Lura, P.; Jensen, O. M. & van Breugel, K., “Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms”. Cement and Concrete Research, vol. 33, (2), pp. 223-232, 2003. https://doi.org/10.1016/S0008-8846(02)00890-6. [Google Scholar]
  4. Neville, A. M., “Properties of Concrete”, 4th ed., John Wiley & Sons: New York, 1996. [Google Scholar]
  5. Powers, T. C., “Mechanism of shrinkage and reversible creep of hardened cement paste”, in The Structure of Concrete and Its Behaviour Under Load: Proceedings of an International Conference, London, September 1965, Brooks, A. E. & Newman, K. (Eds.). Cement and Concrete Association, 1968. [Google Scholar]
  6. Acker, P., “Swelling, shrinkage and creep: a mechanical approach to cement hydration”. Materials and Structures, vol. 37, (4), pp. 237-243, 2004. https://doi.org/10.1007/BF02480632. [CrossRef] [Google Scholar]
  7. Hua, C.; Acker, P. & Ehrlacher, A., “Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale”. Cement and Concrete Research, vol. 25, (7), pp. 1457-1468, 1995. https://doi.org/10.1016/0008-8846(95)00140-8. [CrossRef] [Google Scholar]
  8. Bentz, D., P.; Garboczi, E., J. & Quenard, D., A., “Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass”. Modelling and Simulation in Materials Science and Engineering, vol. 6, (3), p. 211, 1998. https://doi.org/10.1088/0965-0393/6/3/002. [CrossRef] [Google Scholar]
  9. Hansen, W., “Drying Shrinkage Mechanisms in Portland Cement Paste”. Journal of the American Ceramic Society, vol. 70, (5), pp. 323-328, 1987. https://doi.org/10.1111/j.1151-2916.1987.tb05002.x. [CrossRef] [Google Scholar]
  10. Jennings, H. M., “A model for the microstructure of calcium silicate hydrate in cement paste”. Cement and Concrete Research, vol. 30, (1), pp. 101-116, 2000. https://doi.org/10.1016/S0008-8846(99)00209-4. [CrossRef] [Google Scholar]
  11. Beltzung, F. & Wittmann, F. H., “Role of disjoining pressure in cement based materials”. Cement and Concrete Research, vol. 35, (12), pp. 2364-2370, 2005. https://doi.org/10.1016/j.cemconres.2005.04.004. [Google Scholar]
  12. Rajabipour, F.; Sant, G. & Weiss, J., “Interactions between shrinkage reducing admixtures (SRA) and cement paste’s pore solution”. Cement and Concrete Research, vol. 38, (5), pp. 606-615, 2008. https://doi.org/10.1016/j.cemconres.2007.12.005. [Google Scholar]
  13. Rougelot, T.; Skoczylas, F. & Burlion, N., “Water desorption and shrinkage in mortars and cement pastes: Experimental study and poromechanical model”. Cement and Concrete Research, vol. 39, (1), pp. 36-44, 2009. https://doi.org/10.1016/j.cemconres.2008.10.005. [Google Scholar]
  14. Setzer, M. J.; Duckheim, C.; Liebrecht, A. & Kruschwitz, J., “The solid-liquid gel-system of hardened cement paste”, in 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering, vol. Proceedings pro051, Marchand, J., Bissonnette, B., Gagné, R., Jolin, M. & Paradis, F. (Eds.). RILEM Publications SARL, 2006. [Google Scholar]
  15. CEN, “EN 1992 Eurocode 2. Design of concrete structures. 1.1 General rules. Structural fire design”. European Committee for Standardization (CEN): Brussels, Belgium, 2004. [Google Scholar]
  16. Bentz, D. P. & Jensen, O. M., “Mitigation strategies for autogenous shrinkage cracking”. Cement and Concrete Composites, vol. 26, (6), pp. 677-685, 2004. https://doi.org/10.1016/S0958-9465(03)00045-3. [CrossRef] [Google Scholar]
  17. Ribeiro, A. B.; Gonçalves, A. & Carrajola, A., “Effect of shrinkage reduction admixtures on the pore structure properties of mortars”. Materials and Structures, vol. 39, (2), pp. 179-187, 2006. https://doi.org/10.1617/s11527-005-9012-9. [Google Scholar]
  18. Soltani, F.; Goueygou, M.; Lafhaj, Z. & Piwakowski, B., “Relationship between ultrasonic Rayleigh wave propagation and capillary porosity in cement paste with variable water content”. NDT & E International, vol. 54, pp. 75-83, 2013. https://doi.org/10.1016/j.ndteint.2012.12.003. [CrossRef] [Google Scholar]
  19. Chen, H.; Wyrzykowski, M.; Scrivener, K. & Lura, P., “Prediction of self-desiccation in low water-to-cement ratio pastes based on pore structure evolution”. Cement and Concrete Research, vol. 49, pp. 38-47, 2013. https://doi.org/10.1016/j.cemconres.2013.03.013. [CrossRef] [Google Scholar]
  20. Powers, T. C. & Brownyard, T. L., “Studies of the Physical Properties of Hardened Portland Cement Paste”. ACI Journal Proceedings, vol. 43, (9), 1947. 10.14359/15306. [Google Scholar]
  21. Rongbing, B. & Jian, S., “Synthesis and evaluation of shrinkage-reducing admixture for cementitious materials”. Cement and Concrete Research, vol. 35, (3), pp. 445-448, 2005. https://doi.org/10.1016/j.cemconres.2004.07.009. [CrossRef] [Google Scholar]
  22. Sant, G.; Kumar, A.; Patapy, C.; Le Saout, G. & Scrivener, K., “The influence of sodium and potassium hydroxide on volume changes in cementitious materials”. Cement and Concrete Research, vol. 42, (11), pp. 1447-1455, 2012. https://doi.org/10.1016/j.cemconres.2012.08.012. [CrossRef] [Google Scholar]
  23. Folliard, K. J. & Berke, N. S., “Properties of high-performance concrete containing shrinkage-reducing admixture”. Cement and Concrete Research, vol. 27, (9), pp. 1357-1364, 1997. https://doi.org/10.1016/S0008-8846(97)00135-X. [CrossRef] [Google Scholar]
  24. Dang, Y.; Qian, J.; Qu, Y.; Zhang, L.; Wang, Z.; Qiao, D. & Jia, X., “Curing cement concrete by using shrinkage reducing admixture and curing compound”. Construction and Building Materials, vol. 48, pp. 992-997, 2013. https://doi.org/10.1016/j.conbuildmat.2013.07.092. [CrossRef] [Google Scholar]
  25. Mora-Ruacho, J.; Gettu, R. & Aguado, A., “Influence of shrinkage-reducing admixtures on the reduction of plastic shrinkage cracking in concrete”. Cement and Concrete Research, vol. 39, (3), pp. 141-146, 2009. https://doi.org/10.1016/j.cemconres.2008.11.011. [CrossRef] [Google Scholar]
  26. Grasley, Z. C. & Leung, C. K., “Desiccation shrinkage of cementitious materials as an aging, poroviscoelastic response”. Cement and Concrete Research, vol. 41, (1), pp. 77-89, 2011. https://doi.org/10.1016/j.cemconres.2010.09.008. [CrossRef] [Google Scholar]
  27. Paillère, A. M., “Application of Admixtures in Concrete - State-of-the-Art Report prepared by RILEM Technical Committee TC 84-AAC, Application of Admixtures in Concrete “, in RILEM Report 10. CRC Press: London, UK, 1994. https://doi.org/10.1201/9781482271539. [Google Scholar]
  28. Fu, Y.; Gu, P.; Xie, P. & Beaudoin, J. J., “Effect of chemical admixtures on the expansion of shrinkage-compensating cement containing a pre-hydrated high alumina cement - based expansive additive”. Cement and Concrete Research, vol. 25, (1), pp. 29-38, 1995. https://doi.org/10.1016/0008-8846(94)00109-C. [CrossRef] [Google Scholar]
  29. Mechtcherine, V.; Gorges, M.; Schroefl, C.; Assmann, A.; Brameshuber, W.; Ribeiro, A. B.; Cusson, D.; Custódio, J.; Da Silva, E. F.; Ichimiya, K.; Igarashi, S. I.; Klemm, A.; Kovler, K.; De Mendonça Lopes, A. N.; Lura, P.; Nguyen, V. T.; Reinhardt, H. W.; Filho, R. D. T.; Weiss, J.; Wyrzykowski, M.; Ye, G. & Zhutovsky, S., “Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: Results of a RILEM round-robin test”. Materials and Structures/Materiaux et Constructions, vol. 47, (3), pp. 541-562, 2014. https://doi.org/10.1617/s11527-013-0078-5. [Google Scholar]
  30. Mehta, P. K. & Monteiro, P. J. M., “Concrete: Microstructure, Properties, and Materials”, 3rd ed., McGraw-Hill: New York, 2005. [Google Scholar]
  31. Goto, I. T.; Sato, N. T.; Sakai, K. K. & Ii, U. M., “Cement-shrinkage-reducing agent and cement composition “. Patent US4547223A, (Nihon Cement Co., Ltd., Kyoto, Japan), 1985. [Google Scholar]
  32. Goto, K.; Sato, N. T.; Sakai, K. K. & Meshii, M., “Cement shrinkage reducing agent”. Patent JPS57145054A, (Nihon Cement Co., Ltd., Tokyo, Japan; Sanyo Chemical Industries, Ltd., Kyoto, Japan), 1982. [Google Scholar]
  33. Berke, N. S.; Dallaire, M. P.; Gartner, E. M.; Kerkar, A. V. & Martin, T. J., “Drying shrinkage cement admixture”. Patent US5556460A, (W.R. Grace & Co.-Conn., New York, USA), 1996. [Google Scholar]
  34. Berke, N. S.; Dallaire, M. P. & Abelleira, A., “Cement admixture capable of inhibiting drying shrinkage and method of using same”. Patent US5603760A, (W.R. Grace & Co.-Conn., New York, USA), 1997. [Google Scholar]
  35. Kerkar, A. V. & Dallaire, M. P., “Drying shrinkage cement admixture “. Patent US5679150A, (W.R. Grace & Co.-Conn., New York, USA), 1997. [Google Scholar]
  36. Kerkar, A. V. & Gilbert, B. S., “Drying shrinkage cement admixture”. Patent US5604273A, (W.R. Grace & Co.-Conn., New York, USA), 1997. [Google Scholar]
  37. Gartner, E., “Cement shrinkage reducing agent and method for obtaining cement based articles having reduced shrinkage”. Patent EP1911731B1, (Lafarge, S.A., Paris, France), 2007. [Google Scholar]
  38. Schulze, J. & Baumgartl, H., “Shrinkage-reducing agent for cement”. Patent EP0308950A1, (Wacker Chemie AG, Munich, Germany), 2007. [Google Scholar]
  39. Rixom, R. & Mailvaganam, N., “Chemical Admixtures for Concrete”, 3 ed., E & FN Spon: London, 1999. [Google Scholar]
  40. CEN, “EN 196-1:2005 Method of testing cement. Part 1: Determination of strength”. European Committee for Standardization (CEN): Brussels, Belgium, 2005. [Google Scholar]
  41. CEN, “EN 14370:2004 Surface active agents - Determination of surface tension”. European Committee for Standardization (CEN): Brussels, Belgium, 2004. [Google Scholar]
  42. Vargaftik, N. B.; Volkov, B. N. & Voljak, L. D., “International Tables of the Surface Tension of Water”. Journal of Physical and Chemical Reference Data, vol. 12, (3), pp. 817-820, 1983. https://doi.org/10.1063/1.555688. [CrossRef] [Google Scholar]
  43. Estrela, C.; Estrela, C. R.; Guimarães, L. F.; Silva, R. S. & Pécora, J. D., “Surface tension of calcium hydroxide associated with different substances”. J Appl Oral Sci, vol. 13, (2), pp. 152-6, 2005. https://doi.org/10.1590/s1678-77572005000200011. [CrossRef] [Google Scholar]
  44. Weiss, J.; Lura, P.; Rajabipour, F. & Sant, G., “Performance of shrinkage-reducing admixtures at different humidities and at early ages”. ACI Materials Journal;, vol. 105, (5), p. 9, 2008. [Google Scholar]
  45. Brouwers, H. J. H., “The work of Powers and Brownyard revisited: Part 1”. Cement and Concrete Research, vol. 34, (9), pp. 1697-1716, 2004. https://doi.org/10.1016/j.cemconres.2004.05.031. [CrossRef] [Google Scholar]
  46. Churaev, N. V., “Physical Chemistry”, 1st ed., Overseas Publishers Association N.V.: Amsterdam, The Netherlands, 2000. [Google Scholar]
  47. Atkins, P. & De Paula, J., “Physical Chemistry”, 8th ed., Oxford University Press: Oxford, 2006. [Google Scholar]
  48. Baroghel-Bouny, V., “Water vapour sorption experiments on hardened cementitious materials: Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure”. Cement and Concrete Research, vol. 37, (3), pp. 414-437, 2007. https://doi.org/10.1016/j.cemconres.2006.11.019. [CrossRef] [Google Scholar]
  49. Wittmann, F., “Surface tension skrinkage and strength of hardened cement paste”. Matériaux et Construction, vol. 1, (6), pp. 547-552, 1968. https://doi.org/10.1007/BF02473643. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.