Issue |
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
|
|
---|---|---|
Article Number | 07008 | |
Number of page(s) | 16 | |
Section | Conservation, Repair and Strengthening | |
DOI | https://doi.org/10.1051/matecconf/202440307008 | |
Published online | 16 September 2024 |
- A. Sierra-Fernández, L.S. Gómez Villalba, M.E. Rabanal, R. Fort González, New nanomaterials for applications in conservation and restoration of stony materials: A review. Materiales de Construcción 67, 107 (2017). https://doi.org/10.3989/mc.2017.07616 [CrossRef] [Google Scholar]
- S. Papatzani, E. Dimitrakakis, A review of the assessment tools for the efficiency of nanolime calcareous stone consolidant products for historic structures. Buildings 9, 235 (2019). https://doi.org/10.3390/buildings9110235 [CrossRef] [Google Scholar]
- Ö. Cizer, C. Rodriguez-Navarro, E. Ruiz-Agudo, J. Elsen, D. Van Gemert, K. Van Balen, Phase and morfology evolution of calcium carbonate precipitated by carbonation of hydrated lime. J Mater Sci 47, 6151-6165 (2012). https://doi.org/10.1007/s10853-012-6535-7 [CrossRef] [Google Scholar]
- C.Rodriguez-Navarro, K. Elert, R. Ševčík, Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation. CrystEngComm 18, 6594-6607 (2016) https://doi.org/10.1007/s10853-012-6535-7 [CrossRef] [Google Scholar]
- G. Ziegenbalg, M. Drdácký, C. Dietze, D. Schuch, Nanomaterials in Architecture and Art Conservation (Pan Stanford Publishing, 2018) [CrossRef] [Google Scholar]
- G. Ziegenbalg, M. Dobrzyńska-Musiela, Nanolime – possible applications for the conservation and protection of the cultural heritage, in Euro-American Congress Rehabend, Burgos, Spain, May 24-27 (2016) [Google Scholar]
- E. Maryniak-Piaszczynski, G. Ziegenbalg, Nanolime as a binder for injection grouts and repair mortars, in Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop, Prag (2010), 1301-1309 [Google Scholar]
- G. Ziegenbalg, Colloidal calcium hydroxide – a new material for consolidation and conservation of carbonatic stones, in Proceedings of the 11th International Congress on Deterioration and Conservation of Stone, Torun (2008), 1109-1115 [Google Scholar]
- P. Baglioni, R. Giorgi, Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter 2, 293-303 (2006) https://doi.org/10.1039/b516442g [CrossRef] [Google Scholar]
- D. Chelazzi, R. Giorgi, L. Dei, P. Baglioni, Nanotecnologie per la conservazione del patrimonio culturale. La Chimica e l’industria 10, 78-82 (2005) [Google Scholar]
- E. Hayek, H. Newesely, W. Hassenteufel, B. Krismer, Zur Bildungsweise und Morfologie der schwerlöslichen Calciumphosphate. Mh. Chem. Bd. 91, 249–262 (1960) https://doi.org/10.1007/BF00901743 [Google Scholar]
- S. Chander, D. W. Fuerstenau, Interfacial Properties and Equilibria in the Apatite-Aqueous Solution System. Journal of Colloid and Interface Science 70(3), 506-516 (1979) https://doi.org/10.1016/0021-9797(79)90058-4 [CrossRef] [Google Scholar]
- O. Mekmene, S. Quillard, T. Rouillon, J. M. Bouler, M. Piot, F. Gaucheron, Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Science & Technology 89(3), 301-316 (2009) https://doi.org/10.1051/dst/2009019 [CrossRef] [EDP Sciences] [Google Scholar]
- C. Drouet, A comprehensive guide to experimental and predicted thermodynamic properties of phosphate apatite minerals in view of applicative purposes. J. Chem. Thermodynamics 81, 143-159 (2015) https://doi.org/10.1016/j.jct.2014.09.012 [CrossRef] [Google Scholar]
- I.R. Gibson, W. Bonfield, Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. Journal of Biomedical Materials Research 59 (4), 697-708 (2002) https://doi.org/10.1002/jbm.10044 [CrossRef] [Google Scholar]
- S.A. Siddiqi, U. Azhar, Carbonate substituted hydroxyapatite, in Woodhead Publishing Series in Biomaterials, Handbook of Ionic Substituted Hydroxyapatites, 149-173 (Woodhead Publishing, 2020) https://doi.org/10.1016/B978-0-08-102834-6.00006-9 [CrossRef] [Google Scholar]
- M. Epple, S.V. Dorozhkin, Die biologische und medizinische Bedeutung von Calciumphosphaten. Angew. Chem. 114, 3260-3277 (2002) https://doi.org/10.1002/1521-3757(20020902)114:17<3260::AID-ANGE3260>3.0.CO;2-S [CrossRef] [Google Scholar]
- J.E. Harries, D.W.L. Hukins, C. Holt, S.S. Hasnain, Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. Journal of Crystal Growth 84(4), 563-570 (1987) https://doi.org/10.1016/0022-0248(87)90046-7 [CrossRef] [Google Scholar]
- M.S. Tung, T.J. O’Farrell, Effect of ethanol on the formation of calcium phosphates. Colloids Surfaces A: Physicochem. Eng. Aspects 110, 191-198 (1996) https://doi.org/10.1016/0927-7757(95)03450-1 [CrossRef] [Google Scholar]
- S. Naidu, G.W. Scherer, Nucleation, growth and evolution of calcium phosphate films on calcite. Journal of Colloid and Interface Science 435, 128-137 (2014) https://doi.org/10.1016/j.jcis.2014.08.018 [CrossRef] [Google Scholar]
- Z. Zhuang, H. Yamamoto, M. Aizawa, Synthesis of plate-shaped hydroxyapatite via an enzyme reaction of urea with urease and is characterization. Powder Technology 222, 193-200 (2012) https://doi.org/10.1016/j.powtec.2012.02.046 [CrossRef] [Google Scholar]
- M. Iijima, K. Onuma, Particle-size-dependent octacalcium phosphate overgrowth on β-tricalcium phosphate substrate in calcium phosphate solution. Ceramics International 44(2) (2017) https://doi.org/10.1016/j.ceramint.2017.10.167 [Google Scholar]
- E. Wiberg, A.F. Holleman, Lehrbuch der anorganischen Chemie. 90. Aufl. (de Gruyter, Berlin, 1976) 731-734 [Google Scholar]
- E. Ferroni, Atti del Convegno Internazionale di Studi ‘Piero della Francesca ad Arezzo’, Arezzo, Italy, March 7-10 (1990) [Google Scholar]
- E. Ferroni, Il contributo delle scienze chimiche per la conoscenza e la conservazione preventiva. OPD Restauro 11, 97-102 (1999) [Google Scholar]
- M. Licchelli , M.Malagodi, M.Weththimuni, C. Zanchi, Nanoparticles for conservation of bio-calcarenite stone. Applied Physics A: Materials Science & Processing 114, 673-683 (2013) https://doi.org/10.1007/s00339-013-7973-z [Google Scholar]
- B. Gonçalves, C. Southwick, Sustainability in Conservation for South America: Turning to Green Conservation for the Preservation of Culture Heritage. Contributions from Speakers 40, 61 (2018) [Google Scholar]
- F.P. Byrne, S. Jin, G. Paggiola, T.H.M. Petchey, J.H. Clark, T.J. Farmer, A.J. Hunt, R.C. McElroy, J. Sherwood, Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4(7), 1-24 (2016) https://doi.org/10.1186/s40508-016-0051-z [CrossRef] [Google Scholar]
- E. Sassoni, G. Graziani, E. Franzoni, An innovative phosphate-based consolidant for limestone. Part 1: Effectiveness and compatibility in comparison with ethyl silicate. Construction and Building Materials 102, 918-930 (2016) https://doi.org/ 10.1016/j.conbuildmat.2015.04.026 [CrossRef] [Google Scholar]
- E. Sassoni, Phosphate-based treatments for conservation of stone. RILEM Technical Letters 2, 14-19 (2017) https://doi.org/10.21809/rilemtechlett.2017.34 [CrossRef] [Google Scholar]
- M. Matteini, S. Rescic, F. Fratini, G. Botticelli, Ammonium Phosphates as Consolidating Agents for Carbonatic Stone Materials Used in Architecture and Cultural Heritage: Preliminary Research. Conservation, Analysis and Restoration 5(6), 717-736 (2011) https://doi.org/10.1080/15583058.2010.495445 [Google Scholar]
- A. Shekofteh, E. Molina, L. Rueda-Quero, A. Arizzi, G. Cultrone, The efficiency of nanolime and dibasic ammonium phosphate in the consolidation of beige limestone from the Pasargadae World Heritage Site. Archaeol Anthropol Sci 11, 5065–5080 (2019) https://doi.org/10.1007/s12520-019-00863-y [CrossRef] [Google Scholar]
- E. Sassoni, Hydroxyapatite and other calcium phosphates for the conservation of cultural heritage: A review. Materials 11(4), 557 (2018) https://doi.org/10.3390/ma11040557 [CrossRef] [Google Scholar]
- A. Salvatore, S. Vai, S. Caporali, D. Caramelli, M. Lari, E.Carretti, Evaluation of Diammonium hydrogen phosphate and Ca(OH)2 nanoparticles for consolidation of ancient bones. Journal of Cultural Heritage 41, 1-12 (2020) https://doi.org/10.1016/j.culher.2019.07.022 [CrossRef] [Google Scholar]
- E. Nesseri, S.C. Boyatzis, N. Boukos, G. Panagiaris, Optimizing the biomimetic synthesis of hydroxyapatite for the consolidation of bone using diammonium phosphate, simulated body fluid, and gelatin. SN Appl. Sci. 2, 1892 (2020) https://doi.org/10.1007/s42452-020-03547-8 [CrossRef] [Google Scholar]
- A. North, M. Balonis, I. Kakoulli, Biomimetic hydroxyapatite as a new consolidating agent for archaeological bone. Studies in Conservation 61(3),146-159 (2016) https://doi.org/10.1179/2047058415Y.0000000020 [CrossRef] [Google Scholar]
- W.S. Mokrzycki, M. Tatol, M. Colour difference ΔE – A survey. Machine Graphics and Vision 20(4), 383-411 (2011) [Google Scholar]
- DIN EN 1015-11, Prüfverfahren für Mörtel für Mauerwerk – Teil 11: Bestimmung der Biegezug- und Druckfestigkeit von Festmörtel; Deutsche Fassung EN 1015-11:1999+A1:2006 [Google Scholar]
- DIN EN 1015-18, Prüfverfahren für Mörtel für Mauerwerk – Teil 18: Bestimmung der kapillaren Wasseraufnahme von erhärtetem Mörtel (Festmörtel); Deutsche Fassung EN 1015-18:2002 [Google Scholar]
- DIN EN 1015-19, Prüfverfahren für Mörtel für Mauerwerk – Teil 19: Bestimmung der Wasserdampfdurchlässigkeit von Festmörteln aus Putzmörteln; Deutsche Fassung EN 1015-19:1998+A1:2004 [Google Scholar]
- M.V. Nikolenko, K.V. Vasylenko, V.D. Myrhorodska, A. Kostyniuk, B. Likozar, Synthesis of calcium orthophosphates by chemical precipitation in aqueous solutions: the effect of the acidity, Ca/P molar ratio, and temperature on the phase composition and solubility of precipitates. Processes 8, 1009 (2020) https://doi.org/10.3390/pr8091009 [CrossRef] [Google Scholar]
- D. Stegemann, B. Raj, A.K. Bhaduri, NDT for Analysis of Microstructures and Mechanical Properties of Metallic Materials, Reference Module in Materials Science and Materials Engineering (2016) https://doi.org/10.1016/B978-0-12-803581-8.03429-9 [Google Scholar]
- H.L. Alberts, 20 2: Ultrasonic Wave Velocities in Solids: Elastic Properties, Temperature, and Pressure Dependence, in Encyclopedia of Materials: Science and Technology, 1-5 (2002) https://doi.org/10.1016/B0-08-043152-6/01824-6 [Google Scholar]
- J.D. Rodrigues, A.P. Ferreira Pinto, Laboratory and onsite study of barium hydroxide as a consolidant for high porosity limestones, Journal of Cultural Heritage 19 (2015) https://doi.org/10.1016/j.culher.2015.10.002 [Google Scholar]
- P.I. Girginova, C. Galacho, R. Veiga, A.S. Silva, A. Candeias, Inorganic nanomaterials for restoration of cultural heritage: synthesis approaches towards nano-consolidants for stone and wall paintings, ChemSusChem 11 (2018) https://doi.org/10.1002/cssc.201801982 [Google Scholar]
- M.J. Arellano-Jiménez, R. García- García, J. Reyes-Gasga, Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-Ray diffraction. Journal of Physics and Chemistry of Solids 70, 390-395 (2009) https://doi.org/10.1016/j.jpcs.2008.11.001 [CrossRef] [Google Scholar]
- Y. Rong, J. Yang, S. Huang, Y. Li, Barium hydroxide nanoparticle-phosphoric acid system for desalination and consolidation of tomb murals, Crystals 12, 1171 (2022) https://doi.org/10.3390/cryst12081171 [CrossRef] [Google Scholar]
- E. Franzoni, E.Sassoni, G. Graziani, Brushing, poultice or immersion? The role of the application technique on the performance of a novel hydroxyapatite-based consolidating treatment for limestone. Journal of Cultural Heritage 2865, 1-12 (2014) https://doi.org/10.1016/j.culher.2014.05.009 [Google Scholar]
- E. Possent, C. Colombo, D. Bersani, M. Bertasa, A. Botteon, C. Conti, P.P. Lottici, M. Realini, New insight on the interaction of diammonium hydrogenphosphate conservation treatment with carbonatic substrates: A multi-analytical approach. Microchemical Journal 127, 79-86 (2016) https://doi.org/10.1016/j.microc.2016.02.008 [CrossRef] [Google Scholar]
- S. Papatzani, E. Dimitrakakis, A review of the assessment tools for the efficiency of nanolime calcareous stone consolidant products for historic structures. Buildings 9(11), 235 (2019) https://doi.org/10.3390/buildings9110235 [CrossRef] [Google Scholar]
- W. Ostwald, Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung, in Zeitschrift für Physikalische Chemie (International Journal of Research in Physical Chemistry and Chemical Physics) 22, 289–330 (1987) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.