Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 07007
Number of page(s) 17
Section Conservation, Repair and Strengthening
DOI https://doi.org/10.1051/matecconf/202440307007
Published online 16 September 2024
  1. Souza, J. S. Impact of degradation factors on the useful life of building facades. Doctoral thesis. University of Brasília, 2019. [Google Scholar]
  2. Morgado, A. et al. Durability of thermal renders with lightweight and thermal insulating aggregates: Regranulated expanded cork, silica aerogel and expanded polystyrene. Gels, v. 7, n. 2, 2021. [Google Scholar]
  3. Oliveira, L. A. Metodologia para desenvolvimento de projeto de fachadas leves. Tese (Doutorado). Escola Politécnica da Universidade de São Paulo. São Paulo, 2009., (n.d.). [Google Scholar]
  4. Amorim, C. N. D.; Braga, D. K.; Christakou, E. D.; Grillo, J. C. S.; Lima, T. B. S.; Baldoíno, V. Reabilitação ambiental e uso da luz natural na arquitetura moderna: Brasília Palace Hotel e Palácio do Itamaraty. Paranoá. v. 3, 2014. 115-128 pp. [Google Scholar]
  5. International Organization for Standardization. ISO 15686-2 (2012): Buildings - Service life planning. Part 2: Service life prediction procedures, International Organization for Standardization. [Google Scholar]
  6. Silvestre, J. D.; De Brito, J. (2010) Inspection and repair of ceramic tiling within a building management system. Journal of Materials in Civil Engineering. v. 22, n. 1, pp. 39-48. [CrossRef] [Google Scholar]
  7. Wetzel, A.; Herwegh, M.; Zurbriggen, R.; Winnefeld, F. Influence of shrinkage and water transport mechanisms on microstructure and crack formation of tile adhesive mortars. Cement and Concrete Research, v. 42, n. 1, p. 39–50, jan. 2012. [CrossRef] [Google Scholar]
  8. Bauer, E.; Silva, M. N. B.; Zanoni, V. A. G. (2015) Measurement of degradation and useful life on facades. Brazilian Symposium on Mortar Technology – SBTA, Porto Alegre, Brazil. pp. 1-8. [Google Scholar]
  9. Nascimento, M. L. M.; Bauer, E.; Souza, J. S.; Zanoni, V. A. G. (2016) Wind-driven rain incidence parameters obtained by hygrothermal simulation. Journal of Building Pathology and Rehabilitation. v. 1, n. 1, p. 5. [CrossRef] [Google Scholar]
  10. Souza, J. S.; Silva, A.; De Brito, J.; Bauer, E. (2018) Analysis of the influencing factors of external wall ceramic claddings’ service life using regression techniques. Engineering Failure Analysis. v.83, pp. 141-155. [CrossRef] [Google Scholar]
  11. Ferreira, C. A. Silva, J. De Brito, I.S. Dias, I. Flores-Colen, The impact of imperfect maintenance actions on the degradation of buildings’ envelope components, Journal of Building Engineering. 33, 2021. [Google Scholar]
  12. Blocken, B.; Derome, J.; Carmeliet, J. Rainwater runoff from building facades: a review. Building and Environment, pp.339-361, 2013. [Google Scholar]
  13. Zanoni, V. A. G. Influence of climatic agents of degradation on the hygrothermal behavior of facades in Brasília. Doctoral thesis. University of Brasília, 2015. [Google Scholar]
  14. Bauer, E.; Souza, A.L.R. Failure patterns associated with facade zones and anomalies in the initiation and propagation of degradation. Construction and Building Material, v. 347. 2022. [Google Scholar]
  15. Freitas, V. P.; Vieira, M.; Guimarães, A. S. (2013) The French, Norwegian and Danish experience. A State-of-the-Art Report on Building Pathology. CIB Publication 393. pp. 30-35. [Google Scholar]
  16. Kazmierczak, C. S.; Kulakowski, M. P.; Brehm, F. A.; Sentena, J. A. A.; Marquetto, L. (2016) Considerações sobre a Avaliação da Durabilidade de Revestimentos de Argamassa com Incorporação de Resíduos por Meio de Ensaios Acelerados com Ciclos Térmicos. Ed. Scienza. Porto Alegre. Cap. 6. pp. 147 - 175. [Google Scholar]
  17. Souza, A. L. R.; Andrade, D. T.; Bauer, E; Souza, J. S.. Classificação de fachadas de edifícios por meio do critério do grau de proteção, In: REHABEND - Construction Pathology, Rehabilitation Technology and Heritage Management, Granada, 2022. [Google Scholar]
  18. International Organization for Standardization. ISO 15686-10 (2010): Buildings and constructed assets -Service life planning - Part 10: When to assess functional performance. International Organization for Standardization. [Google Scholar]
  19. CIB. Defects in Masonry Walls Guidance on Cracking: Identification, Prevention and Repair. International Council for Research Innovation in Building and Construction, 2014. [Google Scholar]
  20. Dias, J. L.; Silva, A.; Chai, C.; Gaspar, P. L.; De Brito, J. Neural networks applied to service life prediction of exterior painted surfaces. Build. Res. Inf., v. 42, n. 3, pp. 371–380, 2014. [CrossRef] [Google Scholar]
  21. Cóias, V. Inspeções e ensaios na reabilitação de edifícios. 2 ed. IST Press: Lisboa. 2009. [Google Scholar]
  22. Flores-Colen, I.; De Brito, J.; Freitas, V. P. Methodology for in-service performance assessment of rendering facades for predictive maintenance. TG75, W014, W080, W083 and W086, pp. 388, 2009. [Google Scholar]
  23. Santos, D. G. Estudo da vida útil e degradação de fachadas em argamassa a partir da inspeção de edifícios. Dissertação de Mestrado, Universidade de Brasília, Brasília, 2018. [Google Scholar]
  24. Bauer, E.; Souza, A.L.R. Failure patterns associated with facade zones and anomalies in the initiation and propagation of degradation. J Construction and Building Material, v. 347. 2022. [Google Scholar]
  25. British Standards Institution. BS ISO 15686-8: Buildings and constructed assets - Service life planning. Part 8: Reference service life and service life estimation, 2008. [Google Scholar]
  26. Associação Brasileira de Normas Técnicas. ABNT NBR 15575-1 (2013): Edificações habitacionais – Desempenho – Parte 1: Requisitos gerais. Rio de Janeiro. [Google Scholar]
  27. Silvestre, J. D.; De Brito, J. Ceramic tiling inspection system. Construction and Building Materials, v. 23, p. 653–668, 2009. [CrossRef] [Google Scholar]
  28. Andrade, D. T. Modeling of facade degradation based on parameters obtained from hygrothermal simulation for buildings in Brasília. Master’s Dissertation in Structures and Civil Construction, Department of Civil and Environmental Engineering, University of Brasília, Brasília, DF, 101 p. [Google Scholar]
  29. Souza, A. L. R.; Romeiro, T. R. D. L. M.; Bauer, E. Influence of the Exposure Degree on the Degradation of Facades of Buildings in Brasília - Brazil. Buildings, v. 14, n. 1, 2024. [Google Scholar]
  30. Bauer, E.; Milhomem, P. M.; Aidar, L. A. G. Evaluating the damage degree of cracking in facades using infrared thermography the elements for allowing degradation agents such as. Journal of Civil Structural Health Monitoring, p. 12, 2018. [Google Scholar]
  31. Souza, J. S.; Silva, A.; De Brito, J.; Bauer, E. (2018) Analysis of the influencing factors of external wall ceramic claddings’ service life using regression techniques. Engineering Failure Analysis. v.83, pp. 141-155. [CrossRef] [Google Scholar]
  32. Carretero-Ayuso, M. J.; Moreno-Cansado, A.; García-Sanz-Calcedo, J. Anomalies in External Construction Elements in Spain according to Cause-Damage Relationship. Journal of Infrastructure Systems, v. 25, n. 3, p. 1–7, set. 2019. [Google Scholar]
  33. Carretero-Ayuso, M. J.; Rodríguez-Jiménez, C. E.; Bienvenido-Huertas, D.; Moyano, J. J. Interrelations between the types of damages and their original causes in the envelope of buildings. Journal of Building Engineering, v. 39, n. 102235, p. 1–13, fev. 2021. [CrossRef] [Google Scholar]
  34. ASTM (1996) 632–82: standard practice for developing accelerated tests to aid prediction of the service life of building components and materials. Am Soc Test Mater Philadelphia. [Google Scholar]
  35. SHOHET, I. M. Rosenfeld, Y. Puterman, M. and Gilboa, E. Deterioration Patterns For Maintenance Management – A Methodological ApproachDurability of Building Materials and Components 8. (1999). [Google Scholar]
  36. Carnicero, J.A.; Ausín, M.C; Wiper, M.P. Non-parametric copulas for circular–linear and circular–circular data: an application to wind directions. Stoch Environ Res Risk Assess, v.27, pp. 1991–2002, 2013. [CrossRef] [Google Scholar]
  37. Mota, L. M. Study of the initiation and propagation of degradation of mortar-coated facades. Masters dissertation. University of Brasília, 2021. [Google Scholar]
  38. Pereira, C. H. D. A. F. Contribuição ao Estudo da Fissuração, da Retração e do Mecanismo de Descolamento do Revestimento à Base De Argamassa. Tese (Doutorado em engenharia civil) - programa de pós-graduação em estruturas e construção civil - PECC/UNB, Brasília, 2007. [Google Scholar]
  39. CIB. Defects in Masonry Walls Guidance on Cracking: Identification, Prevention and Repair. International Council for Research Innovation in Building and Construction, 2014. [Google Scholar]
  40. Bauer, E.; Souza, J. S.; Mota, L. M. G. Degradation of mortar-coated facades in buildings in Brasília, Brazil. Built Environment, Porto Alegre, v.21, n.4, p.23-43, 2021. [Google Scholar]
  41. Bordalo, R.; De Brito, J.; Gaspar, P. L.; Silva, A. (2011) Service life prediction modelling of adhesive ceramic tiling systems. Building Research and Information. v. 39. n. 1. pp.66-78. [CrossRef] [Google Scholar]
  42. Nogal, M., & O’connor, A. Resilience assessment of transportation networks. Routledge Handbook of Sustainable and Resilient Infrastructure, 199, 2018. [Google Scholar]
  43. Galbusera, M. M.; De Brito, J.; Silva, A. (2014) The importance of the quality of sampling in service life prediction. Construction and Building Materials. v. 66. pp. 19-29. [CrossRef] [Google Scholar]
  44. Magos, M.; De Brito, J.; Gaspar, P. L.; Silva, A. Application of the factor method to the prediction of the service life of external paint finishes on facades, Materials and Structures, v. 49 (12), pp. 5209–5225, 2016. [CrossRef] [Google Scholar]
  45. Prieto, A. J. Silva, A. Service life prediction and environmental exposure conditions of timber claddings in South Chile, Building Research and Information. 48 - 191–206, 2020. [Google Scholar]
  46. Antunes, G. R. (2010) Estudo de manifestações patológicas em revestimento de fachada em Brasília: sistematização da incidência de casos. Dissertação de Mestrado. Universidade de Brasília. Brasília, Brasil. 166 p. [Google Scholar]
  47. Silva, M. N. B. Avaliação quantitativa da degradação e vida útil de revestimentos de fachada – Aplicação ao caso de Brasília/DF. Tese de Doutorado. Universidade de Brasília, 2014. [Google Scholar]
  48. Souza, J. S. Evolução da degradação de fachadas - efeito dos agentes de degradação e dos elementos constituintes. Dissertação de Mestrado. Universidade de Brasília, 2016. [Google Scholar]
  49. Pinheiro, P. I. S. Aplicação do Método de Mensuração da Degradação (MMD) ao Estudo das Fachadas de Edifícios em Brasília. Projeto Final. Universidade de Brasília, 2016. [Google Scholar]
  50. Piazzarollo, C. B. Estudo da evolução e da gravidade da degradação nas diferentes zonas componentes da fachada. Dissertação (Mestrado) - Brasília: Universidade de Brasília- UNB, 2019. [Google Scholar]
  51. Souza, J.; Piazzarollo, C. B.; Bauer, E. Aplicação do Método de Mensuração de Degradação em revestimentos de fachadas. TECSIC- 2o Workshop de Tecnologia de Processos e Sistemas Construtivos, ago. 2019. [Google Scholar]
  52. Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Goncalves, J. L. M; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v., n. 6. p.711–728. Gebrüder Borntraeger, Stuttgart, 2013, (n.d.). [CrossRef] [Google Scholar]
  53. Associação Brasileira de Normas Técnicas. ABNT NBR 15220-3 (2005): Desempenho térmico de edificações – Parte 3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. Rio de Janeiro. [Google Scholar]
  54. Amorim, C. N.; Flores, A. L. (2005). Residential buildings in the Plano Piloto superblocks, Brasília: Aspects of preservation and environmental comfort. National and Latin American Meeting on Comfort in the Built Environment – ENCAC/ELACAC. Maceió, Brazil. pp. 37–46. [Google Scholar]
  55. Bauer, E.; Souza, J. S.; Piazzarollo, C. B. Application of the Degradation Measurement Method in the Study of Facade Service Life. In: DELGADO, J. M. P. Q. (Ed.). Building Pathology, Duraability and Service Life, v. 12. Porto, Portugal: Springer International Publishing, 2020. p. 105–119. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.