Open Access
Issue
MATEC Web Conf.
Volume 398, 2024
2nd International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2024)
Article Number 01035
Number of page(s) 12
DOI https://doi.org/10.1051/matecconf/202439801035
Published online 25 June 2024
  1. Ahmad, A., Khan, QU Z., Raza, A., Reliability Analysis of Strength Models for CFRP-Confined Concrete Cylinders. Composite Structures, 2020: p. 112312. [CrossRef] [Google Scholar]
  2. Hollaway, L.C., M. Chryssanthopoulos, and S.S. Moy, Advanced polymer composites for structural applications in construction: ACIC 2004. 2004: Woodhead Publishing. [CrossRef] [Google Scholar]
  3. Abdellatif, S. and A. Raza, Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements. Structural Engineering and Mechanics, 2023. 85(3): p. 315–335. [Google Scholar]
  4. Raza, A., S. Abdellatif, and M.H. El Ouni, A GMDH model and parametric investigation of geopolymeric recycled concrete FRP-spiral-confined members. Engineering Applications of Artificial Intelligence, 2023. 125: p. 106769. [CrossRef] [Google Scholar]
  5. Raza, A., et al., Tests and modeling of hybrid fiber-reinforced geopolymer concrete elements having BFRP helix: An application for sustainable built environment. Journal of Building Engineering, 2023: p. 108229. [Google Scholar]
  6. De Lorenzis, L. and R. Tepfers, Comparative study of models on confinement of concrete cylinders with fiber-reinforced polymer composites. Journal of Composites for Construction, 2003. 7(3): p. 219–237. [CrossRef] [Google Scholar]
  7. Parvin, A. and A.S. Jamwal, Effects of wrap thickness and ply configuration on composite-confined concrete cylinders. Composite structures, 2005. 67(4): p. 437–442. [CrossRef] [Google Scholar]
  8. Li, G., Kidane, S., Pang, Su- S., Helms, JE, Stubblefield, Michael A., Investigation into FRP repaired RC columns. Composite structures, 2003. 62(1): p. 83–89. [CrossRef] [Google Scholar]
  9. Demers, M. and K.W.J.C.J.o.C.E. Neale, Confinement of reinforced concrete columns with fibre-reinforced composite sheets-an experimental study. 1999. 26(2): p. 226–241. [Google Scholar]
  10. Prota, A., G. Manfredi, and E. Cosenza, Ultimate behavior of axially loaded RC wall-like columns confined with GFRP. Composites Part B: Engineering, 2006. 37(7-8): p. 670–678. [CrossRef] [Google Scholar]
  11. Li, L., et al., An experimental and numerical study of the effect of thickness and length of CFRP on performance of repaired reinforced concrete beams. Construction Building Materials, 2006. 20(10): p. 901–909. [CrossRef] [Google Scholar]
  12. Ţăranu, N., et al. The Efficiency of Fiber Reinforced Polymer Composites Solutions in the Construction Industry. in Proc. of the 6th Internat. Conf. on Manag. of Tech. Changes, MTC, Alexandroupolis, Greece, I. 2009. [Google Scholar]
  13. Takemura H, K.K., Effect of loading hysteresis on ductility capacity of reinforced concrete bridge piers. Journal of Structural Engineering, 1997. 43A: p. 849–58. [Google Scholar]
  14. Hoshikuma, J., et al., Stress-strain model for confined reinforced concrete in bridge piers. Journal of Structural Engineering, 1997. 123(5): p. 624–633. [CrossRef] [Google Scholar]
  15. Kawashima, K., G. Shoji, and Y. Sakakibara, A cyclic loading test for clarifying the plastic hinge length of reinforced concrete piers. Journal of Structural Engineering, 2000. 46: p. 767–776. [Google Scholar]
  16. Ann, K. and C.-G. Cho, Constitutive behavior and finite element analysis of FRP composite and concrete members. Materials, 2013. 6(9): p. 3978–3988. [CrossRef] [Google Scholar]
  17. Fardis, M.N. and H.H. Khalili, FRP-encased concrete as a structural material. Magazine of Concrete Research, 1982. 34(121): p. 191–202. [CrossRef] [Google Scholar]
  18. Pham, T., Hadi, MNS, Stress Prediction Model for FRP Confined Rectangular Concrete Columns with Rounded Corners. Journal of Composites for Construction, 2013. 18(1): p. 04013019. [Google Scholar]
  19. Teng, J., et al., Refinement of a design-oriented stress–strain model for FRP-confined concrete. 2009. 13(4): p. 269–278. [Google Scholar]
  20. Lim, J.C., et al., Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming. 2016. 162: p. 28–37. [Google Scholar]
  21. Mander, J.B., M.J. Priestley, and R. Park, Theoretical stress-strain model for confined concrete. Journal of structural engineering, 1988. 114(8): p. 1804–1826. [CrossRef] [Google Scholar]
  22. ACI-440.2R-02, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. 2002. [Google Scholar]
  23. Samaan, M., A. Mirmiran, and M. Shahawy, Model of concrete confined by fiber composites. Journal of structural engineering, 1998. 124(9): p. 1025–1031. [CrossRef] [Google Scholar]
  24. Karbhari, V.M. and Y. Gao, Composite jacketed concrete under uniaxial compression—Verification of simple design equations. Journal of Materials in Civil Engineering, 1997. 9(4): p. 185–193. [CrossRef] [Google Scholar]
  25. Toutanji, H., Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets. Materials Journal, 1999. 96(3): p. 397–404. [Google Scholar]
  26. Lam, L. and J. Teng, Design-oriented stress–strain model for FRP-confined concrete. Construction Building Materials, 2003. 17(6-7): p. 471–489. [CrossRef] [Google Scholar]
  27. Teng, J.G., et al., Hybrid FRP–concrete–steel tubular columns: concept and behavior. Construction Building Materials, 2007. 21(4): p. 846–854. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.