Open Access
Issue
MATEC Web Conf.
Volume 398, 2024
2nd International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2024)
Article Number 01034
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/202439801034
Published online 25 June 2024
  1. Han, L.-H., W. Li, and R. Bjorhovde, Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of constructional steel research, 2014. 100: p. 211–228. [CrossRef] [Google Scholar]
  2. Raza, A., et al., Rapid repair of geopolymer concrete members reinforced with polymer composites: Parametric 00study and analytical modeling. Engineering Structures, 2024. 299: p. 117143. [CrossRef] [Google Scholar]
  3. Zhang, B., et al., Seismic behaviour of FRP-concrete-steel double-tube columns with shear studs: Experimental study and numerical modelling. Engineering Structures, 2024. 302: p. 117339. [CrossRef] [Google Scholar]
  4. Zhang, B., et al., Elliptical concrete-filled FRP tubes with an embedded H-shaped steel under axial compression and cyclic lateral loading: Experimental study and modelling. Composite Structures, 2024. 330: p. 117839. [CrossRef] [Google Scholar]
  5. Al-Mekhlafi, G.M., M.A. Al-Osta, and A.M. Sharif, Behavior of eccentrically loaded concrete-filled stainless steel tubular stub columns confined by CFRP composites. Engineering Structures, 2020. 205: p. 110113. [CrossRef] [Google Scholar]
  6. He, A., et al., Experimental and numerical investigations of circular recycled aggregate concrete-filled stainless steel tube columns. Journal of Constructional Steel Research, 2021. 179: p. 106566. [CrossRef] [Google Scholar]
  7. Fam, A., F.S. Qie, and S. Rizkalla, Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads. Journal of Structural Engineering, 2004. 130(4): p. 631–640. [CrossRef] [Google Scholar]
  8. O’Shea, M.D. and R.Q. Bridge, Design of circular thin-walled concrete filled steel tubes. Journal of Structural Engineering, 2000. 126(11): p. 1295–1303. [CrossRef] [Google Scholar]
  9. Cao, S., C. Wu, and W. Wang, Behavior of FRP confined UHPFRC-filled steel tube columns under axial compressive loading. Journal of Building Engineering, 2020. 32: p. 101511. [CrossRef] [Google Scholar]
  10. Teng, J., et al., Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement. Engineering Structures, 2015. 97: p. 15–28. [CrossRef] [Google Scholar]
  11. Zeng, L., et al., Experimental study of seismic performance of full-scale basalt FRP-recycled aggregate concrete-steel tubular columns. Thin-Walled Structures, 2020. 151: p. 106185. [CrossRef] [Google Scholar]
  12. Cai, J., et al., Behavior of geopolymeric recycled aggregate concrete-filled FRP tube (GRACFFT) columns under lateral cyclic loading. Engineering Structures, 2020. 222: p. 111047. [CrossRef] [Google Scholar]
  13. Asteris, P.G., et al., Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling. Engineering Structures, 2021. 248: p. 113297. [CrossRef] [Google Scholar]
  14. Memarzadeh, A., H. Sabetifar, and M. Nematzadeh, A comprehensive and reliable investigation of axial capacity of Sy-CFST columns using machine learning-based models. Engineering Structures, 2023. 284: p. 115956. [CrossRef] [Google Scholar]
  15. Prabhu, G.G., M. Sundarraja, and Y.Y. Kim, Compressive behavior of circular CFST columns externally reinforced using CFRp composites. Thin-Walled Structures, 2015. 87: p. 139–148. [CrossRef] [Google Scholar]
  16. Zhou, X., Z. Zhou, and D. Gan, Analysis and design of axially loaded square CFST columns with diagonal ribs. Journal of Constructional Steel Research, 2020. 167: p. 105848. [CrossRef] [Google Scholar]
  17. Dong, C., A. Kwan, and J. Ho, A constitutive model for predicting the lateral strain of confined concrete. Engineering Structures, 2015. 91: p. 155–166. [CrossRef] [Google Scholar]
  18. Kwan, A., C. Dong, and J. Ho, Axial and lateral stress–strain model for FRP confined concrete. Engineering Structures, 2015. 99: p. 285–295. [CrossRef] [Google Scholar]
  19. Lai, M., L. Hanzic, and J.C. Ho, Fillers to improve passing ability of concrete. Structural Concrete, 2019. 20(1): p. 185–197. [CrossRef] [Google Scholar]
  20. Sharif, A.M., G.M. Al-Mekhlafi, and M.A. Al-Osta, Structural performance of CFRP-strengthened concrete-filled stainless steel tubular short columns. Engineering Structures, 2019. 183: p. 94–109. [CrossRef] [Google Scholar]
  21. Mander, J.B., M.J. Priestley, and R. Park, Theoretical stress-strain model for confined concrete. Journal of structural engineering, 1988. 114(8): p. 1804–1826. [CrossRef] [Google Scholar]
  22. Lam, L. and J.G. Teng, Design-oriented stress–strain model for FRP-confined concrete. Construction and building materials, 2003. 17(6-7): p. 471–489. [CrossRef] [Google Scholar]
  23. Toutanji, H., Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets. Materials Journal, 1999. 96(3): p. 397–404. [Google Scholar]
  24. Teng, J., et al., Refinement of a design-oriented stress–strain model for FRP-confined concrete. Journal of composites for construction, 2009. 13(4): p. 269–278. [CrossRef] [Google Scholar]
  25. Richart, F., A. Brandtzaeg, and R. Brown, The failure of plain and spirally reinforced concrete in compression. Bulletin 190. University of Illinois Engineering Experimental Station, Illinois, 1929. [Google Scholar]
  26. Matthys, S., et al., Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites. ACI Structural Journal, 2005. 102(2): p. 258. [Google Scholar]
  27. Lai, M., et al., A stress-path dependent stress-strain model for FRP-confined concrete. Engineering Structures, 2020. 203: p. 109824. [CrossRef] [Google Scholar]
  28. Lai, M., et al., A path dependent stress-strain model for concrete-filled-steel-tube column. Engineering Structures, 2020. 211: p. 110312. [CrossRef] [Google Scholar]
  29. Ho, J., et al., A path dependent constitutive model for CFFT column. Engineering Structures, 2020. 210: p. 110367. [CrossRef] [Google Scholar]
  30. Lam, L. and J. Teng, Design-oriented stress–strain model for FRP-confined concrete. Construction Building Materials, 2003. 17(6-7): p. 471–489. [CrossRef] [Google Scholar]
  31. Zhao O, A.S., Gardner L, Structural response and continuous strength method design of slender stainless steel cross-sections. Engineering Structures, 2017. 140: p. 14–25. [CrossRef] [Google Scholar]
  32. Buchanan C, G.L., Liew A, The continuous strength method for the design of circular hollow sections. Journal of Constructional Steel Research, 2016. 118: p. 207–16. [CrossRef] [Google Scholar]
  33. Tao, Z., et al., Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression. Journal of Constructional Steel Research, 2011. 67(11): p. 1719–1732. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.