Open Access
Issue |
MATEC Web Conf.
Volume 391, 2024
22nd International Conference Diagnostics of Machines and Vehicles “Hybrid Multimedia Mobile Stage” (ICDMV 2023)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 7 | |
Section | Engineering Creativity for Contemporary Europe | |
DOI | https://doi.org/10.1051/matecconf/202439101002 | |
Published online | 02 February 2024 |
- K. A. Abou-El-Hossein, Z. Yahya, High-speed end-milling of AISI 304 stainless steels using new geometrically developed carbide inserts, Journal of Materials Processing Technology, 162-163, 596–602 (2005) [CrossRef] [Google Scholar]
- D. Bartona, J. Federhena, J. Fleischera, Retrofittable vibration-based monitoring of milling processes using wavelet packet transform, CIRPe 2020-8th CIRP Global Web Conference - Flexible Mass Customisation, Procedia CIRP 96, 353–358 (2021) [Google Scholar]
- C. Bisua, L. Olteanua, R. Laheurteb, Ph. Darnisb, O. Cahucb, Experimental approach on torsor dynamic analysis for milling process monitoring and diagnosis, 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering, Procedia CIRP 12, 73–78 (2013) [Google Scholar]
- C. Cooper, J. Zhang, R. X. Gao, P. Wang, I. Ragai, Anomaly detection in milling tools using acoustic signals and generative adversarial networks, Procedia Manufacturing, 48, 372–378, (2020) [CrossRef] [Google Scholar]
- O. Gopkaloa, G. Bezlyudkob, V. Nekhotiashchiyc, O. Gopkaloa, Y. Kurasha, Damage evaluation for AISI 304 steel under cyclic loading based on coercive force measurements, International Journal of Fatigue, 139, 105752 (2020) [CrossRef] [Google Scholar]
- J. He, Y. Sun, H. Gao, L. Guo, A. Cao, T. Chen, On-line milling tool wear monitoring under practical machining conditions, Measurement 222, 113621 (2023) [CrossRef] [Google Scholar]
- V. Kharka, S. Mujumdar, S. Shukla, Study on Helical Milling of SS 304 with Small Diameter Tools under the Influence of Minimum Quantity Lubrication (MQL), 51st SME North American Manufacturing Research Conference (NAMRC 51, 2023), Manufacturing Letters 35, 1312–1317 (2023) [Google Scholar]
- J. Liang, H. Gao, D. Li, Y. Lei, S. Li, L. Guo, L. Chen, Z. Leng, Y. Sun, C. Li, Study on milling tool wear morphology and mechanism during machining superalloy GH4169 with PVD-TiAlN coated carbide tool, Tribology International, 182, 108298 (2023) [CrossRef] [Google Scholar]
- C. K. Madhusudana, H. Kumar, S. Narendranath, Condition monitoring of face milling tool using K-star algorithm and histogram features of vibration signal, Engineering Science and Technology, an International Journal, 19, 1543–1551 (2016) [CrossRef] [Google Scholar]
- T. Mohanraj, S. Shankarb, R. Rajasekarc, N. R. Sakthivela, A. Pramanikd, Tool condition monitoring techniques in milling process 一a review, Journal of Materials Research and Technology, 9, Issue 1, 1032–1042 (2020) [CrossRef] [Google Scholar]
- P. Muthuswamy, Investigation on sustainable machining characteristics of tools with serrated cutting edges in face milling of AISI 304 Stainless Steel, Procedia CIRP, 105, 865–871 (2022) [CrossRef] [Google Scholar]
- M. Naresh Babu, V. Anandan, N. Muthukrishnan, M. Santhanakumar, End milling of AISI 304 steel using Minimum Quantity Lubrication, Measurement, 138, 681–689 (2019) [CrossRef] [Google Scholar]
- V. A. Pechenin, A. I. Khaimovich, A. I. Kondratiev, M. A. Bolotov, Method of controlling cutting tool wear based on signal analysis of acoustic emission for milling, Dynamics and Vibroacoustics of Machines (DVM2016), Procedia Engineering, 176, 246–252 (2017) [Google Scholar]
- G. M. Pittalàa, S. Rizzutia, An investigation of the effect of tool wear on cutting force coefficients for solid end mills, 19th CIRP Conference on Modeling of Machining Operations, Procedia CIRP, 117, 444–449 (2023) [Google Scholar]
- R. Polasik, J. Musiał, J. Jasik, I. Kovtun, A. Povareho, Selected aspects of diagnosing material removal machining processes state, MATEC Web Conf., 332, 01014 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- R. Polasik, A. Troszyński, B. Nowinka, S. Matiukh, Diagnosing of the Glass Fiber Reinforced Polymer Material High Performance Drilling Process State, MATEC Web Conf., 375, 01003 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
- G. Pradeep Krishnan, D. Samuel Raj, Machinability and tribological analysis of used cooking oil for MQL applications in drilling AISI 304 using a low-cost pneumatic operatedMQL system, Journal of Manufacturing Processes, 104, 348–371 (2023) [CrossRef] [Google Scholar]
- A. Sakib, S. Saiful Islam, A. Naheen Ibn, M. Md Mirajul, M. Md Golam, The influence of a newly developed refrigeration cycle based workpiece cooling method in milling AISI 304 stainless steel, Results in Engineering, 20, 101616 (2023) [CrossRef] [Google Scholar]
- A. Schustera, H. Rentzscha, S. Ihlenfeldta, Energy self-sufficient, multi-sensory tool holder for sensitive monitoring of milling processes, 19th CIRP Conference on Modeling of Machining Operations, Procedia CIRP, 117, 80–85 (2023) [Google Scholar]
- M. Stanford, P. M. Lister, K. A. Kibble, Investigation into the effect of cutting environment on tool life during the milling of a BS970-080A15 (En32b) low carbon steel, Wear, 262, 1496–1503 (2007) [CrossRef] [Google Scholar]
- A. Uysal, I. S. Jawahir, Analysis of slip-line model for serrated chip formation in orthogonal machining of AISI 304 stainless steel under various cooling/lubricating conditions, Journal of Manufacturing Processes, 67, 447–460 (2021) [CrossRef] [Google Scholar]
- K. A. Vikrama, Ch. Ratnamb, K. S. Narayanaa, Vibration diagnosis and prognostics of Turn-milling operations using HSS and carbide end mill cutters, 3rd International Conference on Innovations in Automation and Mechatronics Engineering, ICIAME 2016, Procedia Technology, 23, 217–224 (2016) [Google Scholar]
- K. K. Wika, P. Litwa, C. Hitchens, Impact of supercritical carbon dioxide cooling with Minimum Quantity Lubrication on tool wear and surface integrity in the milling of AISI 304L stainless steel, Wear, 426-427, 1691–1701 (2019) [CrossRef] [Google Scholar]
- H. Zhou, S. Gao, Y. Xie, C. Zhang, J. Liu, Multi-condition wear prediction and assessment of milling cutters based on linear discriminant analysis and ensemble methods, Measurement, 216, 112900 (2023) [CrossRef] [Google Scholar]
- Y. Zou, K. Ding, K. Shi, X. Lai, K. Zhang, G. Ding, G. Qin, Wear identification of end mills based on a feature-weighted convolutional neural network under unbalanced samples, Journal of Manufacturing Processes, 89, 64–76 (2023) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.