Open Access
Issue
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
Article Number 01019
Number of page(s) 12
Section Engineering and Technologies for Sustainable Development
DOI https://doi.org/10.1051/matecconf/202337701019
Published online 17 April 2023
  1. Laaziz, S.A., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., Qaiss, A. el Kacem: Bio-composites based on polylactic acid and argan nut shell: Production and properties. Int J Biol Macromol. 104, 30–42 (2017). https://doi.Org/10.1016/J.IJBIOMAC.2017.05.184 [CrossRef] [Google Scholar]
  2. European Bioplastics: Global production capacities of bioplastics 2019-2025. (2020) [Google Scholar]
  3. Jem, K.J., Tan, B.: The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research. 3, 60–70 (2020). https://doi.org/10.1016/J.AIEPR.2020.01.002 [CrossRef] [Google Scholar]
  4. Prata, J.C., Patrício Silva, A.L., da Costa, J.P., Mouneyrac, C., Walker, T.R., Duarte, A.C., Rocha-Santos, T.: Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. Int J Environ Res Public Health. 16, (2019). https://doi.org/10.3390/IJERPH16132411 [CrossRef] [Google Scholar]
  5. Singhvi, M.S., Zinjarde, S.S., Gokhale, D.V.: Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 127, 1612–1626 (2019). https://doi.org/10.1111/JAM.14290 [CrossRef] [Google Scholar]
  6. Tong, K.T.X., Tan, I.S., Foo, H.C.Y., Tiong, A.C.Y., Lam, M.K., Lee, K.T.: Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract. Bioresour Technol. 342, 125880 (2021). https://doi.org/10.1016/J.BIORTECH.2021.125880 [CrossRef] [Google Scholar]
  7. Goulas, K.A., Toste, F.D.: Combining microbial production with chemical upgrading. Curr Opin Biotechnol. 38, 47–53 (2016). https://doi.org/10.1016/J.COPBIO.2015.12.019 [CrossRef] [Google Scholar]
  8. Rahmayetty, Whulanza, Y., Sukirno, Rahman, S.F., Suyono, E.A., Yohda, M., Gozan, M.: Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production. Biocatal Agric Biotechnol. 16, 683–691 (2018). https://doi.org/10.1016/J.BCAB.2018.09.015 [CrossRef] [Google Scholar]
  9. Shuklov, I.A., Dubrovina, N. V., Kühlein, K., Börner, A.: Chemo-Catalyzed Pathways to Lactic Acid and Lactates. Adv Synth Catal. 358, 3910–3931 (2016). https://doi.org/10.1002/ADSC.201600768 [CrossRef] [Google Scholar]
  10. Mazumder, A., Holdt, S.L., de Francisci, D., Alvarado-Morales, M., Mishra, H.N., Angelidaki, I.: Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. J Appl Phycol. 28, 3625–3634 (2016). https://doi.org/10.1007/S10811-016-0872-X [CrossRef] [Google Scholar]
  11. Liang, S., Gliniewicz, K., Gerritsen, A.T., McDonald, A.G.: Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid. Bioresour Technol. 208, 7–12 (2016). https://doi.org/10.1016/J.BIORTECH.2016.02.054 [CrossRef] [Google Scholar]
  12. Cubas-Cano, E., Venus, J., González-Fernández, C., Tomás-Pejó, E.: Assessment of different Bacillus coagulans strains for l-lactic acid production from defined media and gardening hydrolysates: Effect of lignocellulosic inhibitors. J Biotechnol. 323, 9–16 (2020). https://doi.org/10.1016/J.JBIOTEC.2020.07.017 [CrossRef] [Google Scholar]
  13. Komesu, A., Maciel, M.R.W., Filho, R.M.: Separation and purification technologies for lactic acid - A brief review. Bioresources. 12, 6885–6901 (2017). https://doi.org/10.15376/BIORES.12.3.6885-6901 [Google Scholar]
  14. Pohanka, M.: D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. Biomed Res Int. 2020, (2020). https://doi.org/10.1155/2020/3419034 [Google Scholar]
  15. FAO, F. and A.: Fisheries and Aquaculture Department - Yearbook of Fishery and Aquaculture Statistics - Aquaculture production, http://www.fao.org/fishery/static/Yearbook/YB2017_USBcard/navigation/index_content_aqua culture_e.htm [Google Scholar]
  16. Radosavljević, M., Lević, S., Belović, M., Pejin, J., Djukić-Vuković, A., Mojović, L., Nedović, V.: Encapsulation of Lactobacillus rhamnosus in Polyvinyl Alcohol for the production of L- (+)-Lactic Acid. Process Biochemistry. 100, 149–160 (2021). https://doi.org/10.1016/J.PROCBIO.2020.10.006 [CrossRef] [Google Scholar]
  17. Ayodele, B.V., Alsaffar, M.A., Mustapa, S.I.: An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J Clean Prod. 245, 118857 (2020). https://doi.org/10.1016/J.JCLEPRO.2019.118857 [CrossRef] [Google Scholar]
  18. Sharma, S., Horn, S.J.: Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresour Technol. 213, 155–161 (2016). https://doi.org/10.1016/J.BIORTECH.2016.02.090 [CrossRef] [Google Scholar]
  19. Mithra, M.G., Jeeva, M.L., Sajeev, M.S., Padmaja, G.: Comparison of ethanol yield from pretreated lignocellulo-starch biomass under fed-batch SHF or SSF modes. Heliyon. 4, e00885 (2018). https://doi.org/10.1016/J.HELIYON.2018.E00885 [CrossRef] [Google Scholar]
  20. Chai, C.Y., Tan, I.S., Foo, H.C.Y., Lam, M.K., Tong, K.T.X., Lee, K.T.: Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation L-lactic acid production. Bioresour Technol. 330, (2021). https://doi.org/10.1016/j.biortech.2021.124930 [Google Scholar]
  21. Phang, S.-M., Yeong, H.-Y., Lim, P.-E.: The seaweed resources of Malaysia. Botanica Marina. 62, 265–273 (2019). https://doi.org/10.1515/BOT-2018-0067 [CrossRef] [Google Scholar]
  22. Parveez, G.K.A., Tarmizi, A.H.A., Sundram, S., Loh, S.K., Ong-Abdullah, M., Palam, K.D.P., Salleh, K.M., Ishak, S.M., Idris, Z.: Oil palm economic performance in Malaysia and R&D progress in 2020. J Oil Palm Res. 33, 181–214 (2021). https://doi.org/10.21894/JOPR.2021.0026 [Google Scholar]
  23. Cesário, M.T., da Fonseca, M.M.R., Marques, M.M., de Almeida, M.C.M.D.: Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol Adv. 36, 798–817 (2018). https://doi.org/10.1016/J.BIOTECHADV.2018.02.006 [CrossRef] [Google Scholar]
  24. Chai, C.Y., Tan, I.S., Foo, H.C.Y., Lam, M.K., Tong, K.T.X., Lee, K.T.: Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production. Bioresour Technol. 330, 124930 (2021). https://doi.org/10.1016/J.BIORTECH.2021.124930 [CrossRef] [Google Scholar]
  25. Seghetta, M., Hou, X., Bastianoni, S., Bjerre, A.B., Thomsen, M.: Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers - A step towards a regenerative bioeconomy. J Clean Prod. 137, 1158–1169 (2016). https://doi.org/10.1016/J.JCLEPRO.2016.07.195 [CrossRef] [Google Scholar]
  26. Zhang, X., Border, A., Goosen, N., Thomsen, M.: Environmental life cycle assessment of cascade valorisation strategies of South African macroalga Ecklonia maxima using green extraction technologies. Algal Res. 58, 102348 (2021). https://doi.org/10.1016/J.ALGAL.2021.102348 [CrossRef] [Google Scholar]
  27. Sadhukhan, J., Gadkari, S., Martinez-Hernandez, E., Ng, K.S., Shemfe, M., Torres-Garcia, E., Lynch, J.: Novel macroalgae (seaweed) biorefinery systems for integrated chemical, protein, salt, nutrient and mineral extractions and environmental protection by green synthesis and life cycle sustainability assessments. Green Chemistry. 21, 2635–2655 (2019). https://doi.org/10.1039/C9GC00607A [CrossRef] [Google Scholar]
  28. Yun, E.J., Kim, H.T., Cho, K.M., Yu, S., Kim, S., Choi, I.G., Kim, K.H.: Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol. 199, 311–318 (2016). https://doi.org/10.1016/J.BIORTECH.2015.08.001 [CrossRef] [Google Scholar]
  29. Tong, K.T.X., Tan, I.S., Foo, H.C.Y., Lam, M.K., Lim, S., Lee, K.T.: Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. Biomass Conversion and Biorefinery 2022. 1, 1–37 (2022). https://doi.org/10.1007/S13399-022-02561-730. [Google Scholar]
  30. el Harchi, M., Fakihi Kachkach, F.Z., el Mtili, N.: Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. South African Journal of Botany. 115, 161–169 (2018). https://doi.org/10.1016/J.SAJB.2018.01.021 [CrossRef] [Google Scholar]
  31. Teh, Y.Y., Lee, K.T., Chen, W.H., Lin, S.C., Sheen, H.K., Tan, I.S.: Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresour Technol. 246, 20–27 (2017). https://doi.org/10.1016/J.BIORTECH.2017.07.101 [CrossRef] [Google Scholar]
  32. Derman, E., Abdulla, R., Marbawi, H., Sabullah, M.K.: Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia. Renew Energy. 129, 285–298 (2018). https://doi.org/10.1016/J.RENENE.2018.06.003 [CrossRef] [Google Scholar]
  33. Feldman, D., Kowbel, D.J., Glass, N.L., Yarden, O., Hadar, Y.: Detoxification of 5- hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase. Biotechnology for Biofuels 2015 8:1. 8, 1-11 (2015). https://doi.org/10.1186/S13068-015-0244-9 [CrossRef] [Google Scholar]
  34. Shobana, S., Kumar, G., Bakonyi, P., Saratale, G.D., Al-Muhtaseb, A.H., Nemestóthy, N., Bélafi-Bakó, K., Xia, A., Chang, J.S.: A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour Technol. 244, 1341–1348 (2017). https://doi.org/10.1016/J.BIORTECH.2017.05.172 [CrossRef] [Google Scholar]
  35. Ra, C.H., Nguyen, T.H., Jeong, G.T., Kim, S.K.: Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresour Technol. 209, 66–72 (2016). https://doi.org/10.1016/J.BIORTECH.2016.02.106 [CrossRef] [Google Scholar]
  36. Hamouda, R.A., Sherif, S.A., Dawoud, G.T.M., Ghareeb, M.M.: Enhancement of bioethanol production from Ulva fasciata by biological and chemical saccharification. Rendiconti Lincei. 27, 665–672 (2016). https://doi.org/10.1007/S12210-016-0546-2 [CrossRef] [Google Scholar]
  37. Hessami, M.J., Cheng, S.F., Ambati, R.R., Yin, Y.H., Phang, S.M.: Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography. 3 Biotech. 9, 1–8 (2019). https://doi.org/10.1007/S13205-018-1549-8 [CrossRef] [Google Scholar]
  38. Ran, H., Zhang, J., Gao, Q., Lin, Z., Bao, J.: Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnology for Biofuels 2014 7:1. 7, 1-12 (2014). https://doi.org/10.1186/1754-6834-7-51 [CrossRef] [Google Scholar]
  39. Thompson, T.M., Young, B.R., Baroutian, S.: Advances in the pretreatment of brown macroalgae for biogas production. Fuel Processing Technology. 195, 106151 (2019). https://doi.org/10.1016/J.FUPROC.2019.106151 [CrossRef] [Google Scholar]
  40. Tan, I.S., Lam, M.K., Foo, H.C.Y., Lim, S., Lee, K.T.: Advances of macroalgae biomass for the third generation of bioethanol production. Chin J Chem Eng. 28, 502–517 (2020). https://doi.org/10.1016/J.CJCHE.2019.05.012 [CrossRef] [Google Scholar]
  41. Poespowati, T., Riyanto, A., Hazlan, Mahmudi, A., Kartika-Dewi, R.: Enzymatic hydrolysis of liquid hot water pre-treated macro-alga (Ulva lactuca) for fermentable sugar production. MATEC Web of Conferences. 156, (2018). https://doi.org/10.1051/MATECCONF/201815601015 [Google Scholar]
  42. Kostas, E.T., White, D.A., Cook, D.J.: Development of a bio-refinery process for the production of speciality chemical, biofuel and bioactive compounds from Laminaria digitata. Algal Res. 28, 211–219 (2017). https://doi.org/10.1016/J.ALGAL.2017.10.022 [CrossRef] [Google Scholar]
  43. Pathiraja, D., Lee, S., Choi, I.-G.: Model-Based Complete Enzymatic Production of 3,6- Anhydro-l-galactose from Red Algal Biomass. J Agric Food Chem. 66, 6814–6821 (2018). https://doi.org/10.1021/ACS.JAFC.8B01792 [CrossRef] [Google Scholar]
  44. Jmel, M.A., Ben Messaoud, G., Marzouki, M.N., Mathlouthi, M., Smaali, I.: Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose. Carbohydr Polym. 135, 274–279 (2016). https://doi.Org/10.1016/J.CARBPOL.2015.08.048 [CrossRef] [Google Scholar]
  45. Cervantes-Cisneros, D.E., Arguello-Esparza, D., Cabello-Galindo, A., Picazo, B., Aguilar, C.N., Ruiz, H.A., Rodríguez-Jasso, R.M.: Hydrothermal Processes for Extraction of Macroalgae High Value-Added Compounds. Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass. 461–481 (2017). https://doi.org/10.1007/978-3-319-56457-9_20 [Google Scholar]
  46. Michalak, I., Chojnacka, K.: Algae as production systems of bioactive compounds. Eng Life Sci. 15, 160–176 (2015). https://doi.org/10.1002/ELSC.201400191 [CrossRef] [Google Scholar]
  47. del Río, P.G., Domínguez, E., Domínguez, V.D., Romaní, A., Domingues, L., Garrote, G.: Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renew Energy. 141, 728–735 (2019). https://doi.org/10.1016/J.RENENE.2019.03.083 [CrossRef] [Google Scholar]
  48. Gomes-Dias, J.S., Romaní, A., Teixeira, J.A., Rocha, C.M.R.: Valorization of Seaweed Carbohydrates: Autohydrolysis as a Selective and Sustainable Pretreatment. ACS Sustain Chem Eng. 8, 17143–17153 (2020). https://doi.org/10.1021/ACSSUSCHEMENG.0C05396 [CrossRef] [Google Scholar]
  49. Yuan, Y., Macquarrie, D.: Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym. 129, 101–107 (2015). https://doi.org/10.1016/J.CARBPOL.2015.04.057 [CrossRef] [Google Scholar]
  50. Boulho, R., Marty, C., Freile-Pelegrín, Y., Robledo, D., Bourgougnon, N., Bedoux, G.: Antiherpetic (HSV-1) activity of carrageenans from the red seaweed Solieria chordalis (Rhodophyta, Gigartinales) extracted by microwave-assisted extraction (MAE). J Appl Phycol. 29, 2219–2228 (2017). https://doi.org/10.1007/S10811-017-1192-5 [CrossRef] [Google Scholar]
  51. Kundu, C., Lee, J.W.: Optimization conditions for oxalic acid pretreatment of deacetylated yellow poplar for ethanol production. Journal of Industrial and Engineering Chemistry. 32, 298–304 (2015). https://doi.org/10.1016/J.JIEC.2015.09.001 [CrossRef] [Google Scholar]
  52. Amini, A., Ohno, K. Ichiro, Maeda, T., Kunitomo, K.: A kinetic comparison between microwave heating and conventional heating of FeS-CaO mixture during hydrogen-reduction. Chemical Engineering Journal. 374, 648–657 (2019). https://doi.org/10.1016/J.CEJ.2019.05.226 [CrossRef] [Google Scholar]
  53. Dussán, K.J., Silva, D.D.V., Moraes, E.J.C., Arruda, P.V., Felipe, M.G.A.: Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chem Eng Trans. 38, 433–438 (2014). https://doi.org/10.3303/CET1438073 [Google Scholar]
  54. Mao, L., Zhang, L., Gao, N., Li, A.: Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. Green Chemistry. 15, 727–737 (2013). https://doi.org/10.1039/C2GC36346A [CrossRef] [Google Scholar]
  55. Jiang, Z., Yi, J., Li, J., He, T., Hu, C.: Promoting Effect of Sodium Chloride on the Solubilization and Depolymerization of Cellulose from Raw Biomass Materials in Water. ChemSusChem. 8, 1901–1907 (2015). https://doi.org/10.1002/CSSC.201500158 [CrossRef] [Google Scholar]
  56. Greetham, D., Adams, J.M., Du, C.: The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation. Scientific Reports 2020 10:1. 10, 1-15 (2020). https://doi.org/10.1038/s41598-020-66610-9 [CrossRef] [PubMed] [Google Scholar]
  57. Ahmad, A., Banat, F., Taher, H.: A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environ Technol Innov. 20, 101138 (2020). https://doi.org/10.1016/J.ETI.2020.101138 [CrossRef] [Google Scholar]
  58. Wu, W., Zhang, B.: Lactic Acid Bacteria and B Vitamins. Lactic Acid Bacteria. 43–60 (2019). https://doi.org/10.1007/978-981-13-7283-4_3 [CrossRef] [Google Scholar]
  59. Lin, H.-T.V., Huang, M.-Y., Kao, T.-Y., Lu, W.-J., Lin, H.-J., Pan, C.-L.: Production of Lactic Acid from Seaweed Hydrolysates via Lactic Acid Bacteria Fermentation. Fermentation 2020, Vol. 6, Page 37. 6, 37 (2020). https://doi.org/10.3390/FERMENTATION6010037 [CrossRef] [Google Scholar]
  60. Murru, N., Blaiotta, G., Peruzy, M.F., Santonicola, S., Mercogliano, R., Aponte, M.: Screening of Oxalate Degrading Lactic Acid Bacteria of Food Origin. Ital J Food Saf. 6, 6345 (2017). https://doi.org/10.4081/IJFS.2017.6345 [Google Scholar]
  61. Laaziz, S.A., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., Qaiss, A. el Kacem: Bio-composites based on polylactic acid and argan nut shell: Production and properties. Int J Biol Macromol. 104, 30–42 (2017). https://doi.Org/10.1016/J.IJBIOMAC.2017.05.184 [CrossRef] [Google Scholar]
  62. Yu, B., Cao, Y., Sun, H., Han, J.: The Structure and Properties of Biodegradable PLLA/PDLA for Melt-Blown Nonwovens. J Polym Environ. 25, 510–517 (2016). https://doi.org/10.1007/S10924-016-0827-Y [Google Scholar]
  63. Genzel, Y., Vogel, T., Buck, J., Behrendt, I., Ramirez, D.V., Schiedner, G., Jordan, I., Reichl, U.: High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine. 32, 2770–2781 (2014). https://doi.org/10.1016/J.VACCINE.2014.02.016 [CrossRef] [Google Scholar]
  64. Bähr, L., Wüstenberg, A., Ehwald, R.: Two-tier vessel for photoautotrophic high-density cultures. J Appl Phycol. 28, 783–793 (2016). https://doi.org/10.1007/S10811-015-0614-5 [CrossRef] [Google Scholar]
  65. Guljamow, A., Kreische, M., Ishida, K., Liaimer, A., Altermark, B., Bähr, L., Hertweck, C., Ehwald, R., Dittmann, E.: High-Density Cultivation of Terrestrial Nostoc Strains Leads to Reprogramming of Secondary Metabolome. Appl Environ Microbiol. 83, (2017). https://doi.org/10.1128/AEM.01510-17 [CrossRef] [Google Scholar]
  66. Pinto, T., Flores-Alsina, X., Gernaey, K.V., Junicke, H.: Alone or together? A review on pure and mixed microbial cultures for butanol production. Renewable and Sustainable Energy Reviews. 147, 111244 (2021). https://doi.org/10.1016/J.RSER.2021.111244 [CrossRef] [Google Scholar]
  67. Abudi, Z.N., Hu, Z., Sun, N., Xiao, B., Rajaa, N., Liu, C., Guo, D.: Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio. Energy. 107, 131–140 (2016). https://doi.org/10.1016/J.ENERGY.2016.03.141 [CrossRef] [Google Scholar]
  68. Qiang, H., Niu, Q., Chi, Y., Li, Y.: Trace metals requirements for continuous thermophilic methane fermentation of high-solid food waste. Chemical Engineering Journal. 222, 330–336 (2013). https://doi.org/10.1016/J.CEJ.2013.02.076 [CrossRef] [Google Scholar]
  69. Bikker, P., van Krimpen, M.M., van Wikselaar, P., Houweling-Tan, B., Scaccia, N., van Hal, J.W., Huijgen, W.J.J., Cone, J.W., López-Contreras, A.M.: Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol. 28, 3511 (2016). https://doi.org/10.1007/S10811-016-0842-3 [CrossRef] [Google Scholar]
  70. Zollmann, M., Robin, A., Prabhu, M., Polikovsky, M., Gillis, A., Greiserman, S., Golberg, A.: Green technology in green macroalgal biorefineries. Phycologia. 58, 516–534 (2019). https://doi.org/10.1080/00318884.2019.1640516 [CrossRef] [Google Scholar]
  71. Ocreto, J.B., Chen, W.-H., Ubando, A.T., Park, Y.-K., Sharma, A.K., Ashokkumar, V., Ok, Y.S., Kwon, E.E., Rollon, A.P., De Luna, M.D.G.: A critical review on second- and third- generation bioethanol production using microwaved-assisted heating (MAH) pretreatment. Renewable and Sustainable Energy Reviews. 152, 111679 (2021). https://doi.org/10.1016/J.RSER.2021.111679 [CrossRef] [Google Scholar]
  72. Rajak, R.C., Jacob, S., Kim, B.S.: A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review. Science of The Total Environment. 716, 137067 (2020). https://doi.org/10.1016/J.SCITOTENV.2020.137067 [CrossRef] [Google Scholar]
  73. Abdullah, B., Syed Muhammad, S.A.F., Shokravi, Z., Ismail, S., Kassim, K.A., Mahmood, A.N., Aziz, M.M.A.: Fourth generation biofuel: A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews. 107, 37–50 (2019). https://doi.org/10.1016/J.RSER.2019.02.018 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.