Open Access
Issue
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
Article Number 01020
Number of page(s) 9
Section Engineering and Technologies for Sustainable Development
DOI https://doi.org/10.1051/matecconf/202337701020
Published online 17 April 2023
  1. Watanabe, T., Strategies for further development of aquatic feeds. Fisheries Science, 2002. 68(2): p. 242–252. [CrossRef] [Google Scholar]
  2. Gatlin, D.M.III, et al., Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, 2007. 38(6): p. 551–579. [CrossRef] [Google Scholar]
  3. Wang, Y., et al., Replacement of fish meal by rendered animal protein ingredients in feeds for cuneate drum ( Nibea miichthioides). Aquaculture, 2006. 252(2): p. 476–483. [CrossRef] [Google Scholar]
  4. Siddik, M., et al., Dietary tuna hydrolysate modulates growth performance, immune response, intestinal morphology and resistance to Streptococcus iniae in juvenile barramundi, Lates calcarifer. Sci Rep, 2018. 8(1): p. 15942–13. [CrossRef] [Google Scholar]
  5. Chalamaiah, M., et al., Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food chemistry, 2012. 135(4): p. 3020–3038. [CrossRef] [Google Scholar]
  6. Neklyudov, A.D., A.N. Ivankin, and A.V. Berdutina, Properties and uses of protein hydrolysates (review). Applied biochemistry and microbiology, 2000. 36(5): p. 452–459. [CrossRef] [Google Scholar]
  7. Dekkers, E., et al., Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chemistry, 2011. 124(2): p. 640–645. [CrossRef] [Google Scholar]
  8. Hsu, K.-C., Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 2010. 122(1): p. 42–48. [CrossRef] [Google Scholar]
  9. Chalamaiah, M., et al., Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem, 2012. 135(4): p. 3020–3038. [CrossRef] [Google Scholar]
  10. Ospina-Salazar, G.H., et al., The effects of fish hydrolysate and soy protein isolate on the growth performance, body composition and digestibility of juvenile pike silverside, Chirostoma estor. Animal feed science and technology, 2016. 220: p. 168–179. [CrossRef] [Google Scholar]
  11. Xu, H., et al., Graded levels of fish protein hydrolysate in high plant diets for turbot (Scophthalmus maximus): effects on growth performance and lipid accumulation. Aquaculture, 2016. 454: p. 140–147. [CrossRef] [Google Scholar]
  12. Refstie, S., J.J. Olli, and H. Standal, Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon ( Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture, 2004. 239(1): p. 331–349. [CrossRef] [Google Scholar]
  13. Hevroy, E.M., et al., Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquaculture nutrition, 2005. 11(4): p. 301–313. [CrossRef] [Google Scholar]
  14. Chaklader, M.R., et al., The ameliorative effects of various fish protein hydrolysates in poultry by-product meal based diets on muscle quality, serum biochemistry and immunity in juvenile barramundi, Lates calcarifer. Fish & shellfish immunology, 2020. 104: p. 567–578. [CrossRef] [Google Scholar]
  15. Tang, H.G., et al., Effects of fish protein hydrolysate on growth performance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.). J Zhejiang Univ Sci B, 2008. 9(9): p. 684–690. [CrossRef] [Google Scholar]
  16. Bui, H.T.D., et al., Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture, 2014. 418-419: p. 11–16. [CrossRef] [Google Scholar]
  17. Kotzamanis, Y.P., et al., Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol A Mol Integr Physiol, 2007. 147(1): p. 205–214. [CrossRef] [Google Scholar]
  18. Zheng, K., et al., Effect of low molecular weight fish protein hydrolysate on growth performance and IGF-I expression in Japanese flounder (Paralichthys olivaceus) fed high plant protein diets. Aquaculture nutrition, 2014. 20(4): p. 372–380. [CrossRef] [Google Scholar]
  19. Siddik, M.A.B., et al., Growth, biochemical response and liver health of juvenile barramundi (Lates calcarifer) fed fermented and nonfermented tuna hydrolysate as fishmeal protein replacement ingredients. 2018. [Google Scholar]
  20. Pham, H.D., et al., Effects of Dietary Tuna Viscera Hydrolysate Supplementation on Growth, Intestinal Mucosal Response, and Resistance to Streptococcus iniae Infection in Pompano (Trachinotus blochii). Aquaculture nutrition, 2022. 2022: p. 1–14. [CrossRef] [Google Scholar]
  21. Kim, H.S., et al., Substitution effects of fishmeal with tuna byproduct meal in the diet on growth, body composition, plasma chemistry and amino acid profiles of juvenile olive flounder (Paralichthys olivaceus). Aquaculture, 2014. 431: p. 92–98. [CrossRef] [Google Scholar]
  22. Kolkovski and Tandler, The use of squid protein hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae. Aquaculture Nutrition, 2000. 6(1): p. 11–15. [CrossRef] [Google Scholar]
  23. Ovissipour, M., et al., Tuna viscera protein hydrolysate: nutritive and disease resistance properties for Persian sturgeon (Acipenser persicus L.) larvae. Aquaculture research, 2014. 45(4): p. 591–601. [CrossRef] [Google Scholar]
  24. Liang, M., et al., Effects of different levels of fish protein hydrolysate in the diet on the nonspecific immunity of Japanese sea bass, Lateolabrax japonicus (Cuvieret Valenciennes, 1828). Aquaculture research, 2006. 37(1): p. 102–106. [CrossRef] [Google Scholar]
  25. Zheng, K., et al., Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquaculture nutrition, 2012. 18(3): p. 297–303. [CrossRef] [Google Scholar]
  26. Khosravi, S., et al., Effect of dietary hydrolysate supplementation on growth performance, non-specific immune response and disease resistance of olive flounder (Paralichthys olivaceus) challenged with Edwardsiella tarda. Aquaculture nutrition, 2015. 21(3): p. 321–331. [CrossRef] [Google Scholar]
  27. Aksnes, A., et al., Inclusion of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod, Gadus morhua. Aquaculture, 2006. 261(3): p. 1102–1110. [CrossRef] [Google Scholar]
  28. Aksnes, A., et al., Size-fractionated fish hydrolysate as feed ingredient for rainbow trout ( Oncorhynchus mykiss) fed high plant protein diets. I: Growth, growth regulation and feed utilization. Aquaculture, 2006. 261(1): p. 305–317. [CrossRef] [Google Scholar]
  29. Espe, M., K. Ruohonen, and A. El-Mowafi, Hydrolysed fish protein concentrate (FPC) reduces viscera mass in Atlantic salmon (Salmo salar) fed plant-protein-based diets. Aquaculture nutrition, 2012. 18(6): p. 599–609. [CrossRef] [Google Scholar]
  30. Bjørndal, B., et al., A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation. Lipids in health and disease, 2013. 12(1): p. 143–143. [CrossRef] [Google Scholar]
  31. Oliva-Teles, A., A.L. Cerqueira, and P. Gonçalves, The utilization of diets containing high levels of fish protein hydrolysate by turbot ( Scophthalmus maximus) juveniles. Aquaculture, 1999. 179(1): p. 195–201. [CrossRef] [Google Scholar]
  32. Rey Vázquez, G. and G.A. Guerrero, Characterization of blood cells and hematological parameters in Cichlasoma dimerus (Teleostei, Perciformes). Tissue Cell, 2007. 39(3): p. 151–160. [CrossRef] [Google Scholar]
  33. Gómez-Requeni, P., et al., Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture, 2004. 232(1): p. 493–510. [CrossRef] [Google Scholar]
  34. Murray, A.L., et al., Effects of various feed supplements containingfish protein hydrolysate or fish processing by-products on the innate immune functions of juvenile coho salmon ( Oncorhynchus kisutch). Aquaculture, 2003. 220(1): p. 643–653. [CrossRef] [Google Scholar]
  35. Puangkaew, J., et al., Nonspecific immune response of rainbow trout (Oncorhynchus mykiss Walbaum) in relation to different status of vitamin E and highly unsaturated fatty acids. Fish Shellfish Immunol, 2004. 16(1): p. 25–39. [CrossRef] [Google Scholar]
  36. Gasque, P., Complement: a unique innate immune sensor for danger signals. Mol Immunol, 2004. 41(11): p. 1089–1098. [CrossRef] [Google Scholar]
  37. Bachere, E., Shrimp immunity and disease control. Aquaculture, 2000. 191(1): p. 3–11. [CrossRef] [Google Scholar]
  38. Gildberg, A., A. Johansen, and J. Bøgwald, Growth and survival of Atlantic salmon (Salmo salar) fry given diets supplemented with fish protein hydrolysate and lactic acid bacteria during a challenge trial with Aeromonas salmonicida. Aquaculture, 1995. 138(1): p. 23–34. [CrossRef] [Google Scholar]
  39. Gildberg, A. and H. Mikkelsen, Effects of supplementing the feed to Atlantic cod (Gadus morhua) fry with lactic acid bacteria and immuno-stimulating peptides during a challenge trial with Vibrio anguillarum. Aquaculture, 1998. 167(1): p. 103–113. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.