Open Access
Issue
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
Article Number 01018
Number of page(s) 9
Section Engineering and Technologies for Sustainable Development
DOI https://doi.org/10.1051/matecconf/202337701018
Published online 17 April 2023
  1. R. J. Prada, E. L. Martínez, and M. R. W. Maciel, “Computational Study of a Rotating Packed Bed Distillation Column,” Comput. Aided Chem. Eng., vol. 30, pp. 1113–1117, Jan. 2012, doi: 10.1016/B9780-444-59520-1.50081-6. [CrossRef] [Google Scholar]
  2. Q. Liu, Y. Pu, Z. Zhao, J. Wang, and D. Wang, “Synthesis of Silver Sulfide Quantum Dots Via the Liquid-Liquid Interface Reaction in a Rotating Packed Bed Reactor,” Trans. Tianjin Univ., vol. 26, no. 4, pp. 273–282, Aug. 2020, doi: 10.1007/S12209-019-00228-5. [CrossRef] [Google Scholar]
  3. J. Guo, W. Jiao, G. Qi, Z. Yuan, and Y. Liu, “Applications of high-gravity technologies in gas purifications: A review,” Chinese J. Chem. Eng., vol. 27, no. 6, pp. 1361–1373, Jun. 2019, doi: 10.1016/J.CJCHE.2019.01.011. [CrossRef] [Google Scholar]
  4. F. Ghadyanlou, A. Azari, and A. Vatani, “A Review of Modeling Rotating Packed Beds and Improving Their Parameters: Gas-Liquid Contact,” Sustain. 2021, Vol. 13, Page 8046, vol. 13, no. 14, p. 8046, Jul. 2021, doi: 10.3390/SU13148046. [CrossRef] [Google Scholar]
  5. K. N. Finney, M. Akram, M. E. Diego, X. Yang, and M. Pourkashanian, “Carbon capture technologies,” Bioenergy with Carbon Capture Storage Using Nat. Resour. Sustain. Dev., pp. 15–45, Jan. 2019, doi: 10.1016/B978-0-12-816229-3.00002-8. [CrossRef] [Google Scholar]
  6. P. Pakzad, M. Mofarahi, M. Ansarpour, M. Afkhamipour, and C.-H. Lee, “CO2 absorption by common solvents,” Adv. Carbon Capture, pp. 51–87, Jan. 2020, doi: 10.1016/B978-0-12-819657-1.00003-7. [CrossRef] [Google Scholar]
  7. S. Paraschiv and L. S. Paraschiv, “Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018,” Energy Reports, vol. 6, pp. 237–242, Dec. 2020, doi: 10.1016/J.EGYR.2020.11.116. [CrossRef] [Google Scholar]
  8. W. M. Budzianowski, “Modelling of CO2 content in the atmosphere until 2300: Influence of energy intensity of gross domestic product and carbon intensity of energy,” Int. J. Glob. Warm., vol. 5, no. 1, pp. 1–17, 2013, doi: 10.1504/IJGW.2013.051468. [CrossRef] [Google Scholar]
  9. L. Giraldo, D. P. Vargas, and J. C. Moreno-Piraján, “Study of CO2 Adsorption on Chemically Modified Activated Carbon With Nitric Acid and Ammonium Aqueous,” Front. Chem., vol. 8, p. 1007, Nov. 2020, doi: 10.3389/FCHEM.2020.543452/BIBTEX. [CrossRef] [Google Scholar]
  10. C. Castel, R. Bounaceur, and E. Favre, “Membrane Processes for Direct Carbon Dioxide Capture From Air: Possibilities and Limitations,” Front. Chem. Eng., vol. 0, p. 17, Apr. 2021, doi: 10.3389/FCENG.2021.668867. [Google Scholar]
  11. B. Lv, B. Guo, Z. Zhou, and G. Jing, “Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes,” Environ. Sci. Technol., vol. 49, no. 17, pp. 10728–10735, Sep. 2015, doi: 10.1021/ACS.EST.5B02356/ASSET/IMAGES/MEDIUM/ES-2015-02356N_0010.GIF. [CrossRef] [Google Scholar]
  12. C. Font-Palma, D. Cann, C. Udemu, and O. García, “Review of Cryogenic Carbon Capture Innovations and Their Potential Applications,” 2021, Vol. 7, Page 58, vol. 7, no. 3, p. 58, Jul. 2021, doi: 10.3390/C7030058. [Google Scholar]
  13. C. Zhang, “Absorption principle and techno-economic analysis of CO2 absorption technologies: A review,” IOP Conf. Ser. Earth Environ. Sci., vol. 657, no. 1, Feb. 2021, doi: 10.1088/1755-1315/657/1/012045. [Google Scholar]
  14. K. Guo, F. Guo, Y. Feng, J. Chen, C. Zheng, and N. C. Gardner, “Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor,” Chem. Eng. Sci., vol. 55, no. 9, pp. 1699–1706, May 2000, doi: 10.1016/S0009-2509(99)00369-3. [CrossRef] [Google Scholar]
  15. W. Zhang, P. Xie, Y. Li, L. Teng, and J. Zhu, “Hydrodynamic characteristics and mass transfer performance of rotating packed bed for CO2 removal by chemical absorption: A review,” J. Nat. Gas Sci. Eng., vol. 79, no. May, p. 103373, 2020, doi: 10.1016/j.jngse.2020.103373. [CrossRef] [Google Scholar]
  16. P. Xie, X. Lu, X. Yang, D. Ingham, L. Ma, and M. Pourkashanian, “Characteristics of liquid flow in a rotating packed bed for CO2 capture: A CFD analysis,” Chem. Eng. Sci., vol. 172, pp. 216–229, Nov. 2017, doi: 10.1016/j.ces.2017.06.040. [CrossRef] [Google Scholar]
  17. Y. Yang et al., “A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed,” Chem. Eng. Sci., vol. 138, pp. 244–255, Dec. 2015, doi: 10.1016/J.CES.2015.07.044. [CrossRef] [Google Scholar]
  18. J.R. Burns, J.N. Jamil, and C. Ramshaw, “Process intensification: operating characteristics of rotating packed beds — determination of liquid holdup for a high-voidage structured packing,” Chem. Eng. Sci., vol. 55, no. 13, pp. 2401–2415, Jul. 2000, doi: 10.1016/S0009-2509(99)00520-5. [CrossRef] [Google Scholar]
  19. T. Y. Guo, K. P. Cheng, L. X. Wen, R. Andersson, and J. F. Chen, “Three-Dimensional Simulation on Liquid Flow in a Rotating Packed Bed Reactor,” Ind. Eng. Chem. Res., vol. 56, no. 28, pp. 8169–8179, Jul. 2017, doi: 10.1021/ACS.IECR.7B01759. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.