Open Access
Issue |
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 12 | |
Section | Material Development | |
DOI | https://doi.org/10.1051/matecconf/202237003014 | |
Published online | 01 December 2022 |
- M. Niinomi, S. Technol, A. Mater, and M. Niinomi, “Advanced Materials Related content Recent research and development in titanium alloys for biomedical applications and healthcare goods Recent research and development in titanium alloys for biomedical applications and healthcare goods,” 2003, doi: 10.1016/j.stam.2003.09.002. [Google Scholar]
- M. Navarro, A. Michiardi, and O. Castan, “Biomaterials in orthopaedics,” no. January 2014, 2008, doi: 10.1098/rsif.2008.0151. [Google Scholar]
- Y. Okazaki and E. Gotoh, “Comparison of metal release from various metallic biomaterials in vitro,” vol. 26, pp.11–21, 2005, doi: 10.1016/j.biomaterials.2004.02.005. [Google Scholar]
- V. I. Sikavitsas, J. S. Temeno, and A. G. Mikos, “Biomaterials and bone mechanotransduction,” vol. 22, pp.2581–2593, 2001. [Google Scholar]
- S. S. Sidhu, H. Singh, and M. A. H. Gepreel, “A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials,” Mater. Sci. Eng. C, vol. 121, no. October 2020, p. 111661, 2021, doi: 10.1016/j.msec.2020.111661. [CrossRef] [Google Scholar]
- M. Long and H. J. Rack, “Titanium alloys in total joint replacement – a materials science perspective,” vol. 19, 1998. [Google Scholar]
- Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Mater. Sci. Eng. R Reports, vol. 87, pp.1–57, 2015, doi: 10.1016/j.mser.2014.10.001. [CrossRef] [Google Scholar]
- J. Lu, Y. Zhao, P. Ge, and H. Niu, “ScienceDirect Microstructure and beta grain growth behavior of Ti – Mo alloys solution treated,” Mater. Charact., vol. 84, no. 96, pp.105–111, 2013, doi: 10.1016/j.matchar.2013.07.014. [CrossRef] [Google Scholar]
- S. Yumoto et al., “aluminum neurotoxicity in the rat brain,” Int. J. Pixe, vol. 02, no. 04, 1992, doi: https://doi.org/10.1142/S0129083592000531. [Google Scholar]
- D. R. Sumner, T. M. Turner, R. Igloria, R. M. Urban, and J. O. Galante, “Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness,” vol. 31, 1998. [Google Scholar]
- Z. K. Liu, H. Zhang, S. Ganeshan, Y. Wang, and S. N. Mathaudhu, “Computational modeling of effects of alloying elements on elastic coefficients,” Scr. Mater., vol. 63, no. 7, pp.686–691, 2010, doi: 10.1016/j.scriptamat.2010.03.049. [CrossRef] [Google Scholar]
- B. J. Engh CA, “The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty.,” vol. 231, pp.7–28, 1988. [Google Scholar]
- H. Weinans, R. Huiskes, and H. J. Grootenboer, “The behavior of adaptive bone- remodeling simulation models,” J. Biomech., vol. 25, no. 12, pp.1425–1441, 1992, doi: 10.1016/0021-9290(92)90056-7. [CrossRef] [Google Scholar]
- R. Banerjee, S. Nag, J. Stechschulte, and H. L. Fraser, “Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys,” Biomaterials, vol. 25, no. 17, pp.3413–3419, 2004. [CrossRef] [Google Scholar]
- W. F. Ho, S. C. Wu, S. K. Hsu, Y. C. Li, and H. C. Hsu, “Effects of molybdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications,” Mater. Sci. Eng. C, 2012. [Google Scholar]
- Y. L. Hao et al., “Young ’ s Modulus and Mechanical Properties of Ti-29Nb- 13Ta- 4 . 6Zr in Relation to ␣ Љ Martensite,” vol. 33, no. October, pp.3137–3144, 2002. [Google Scholar]
- W. Weng, A. Biesiekierski, Y. Li, and C. Wen, “Materialia Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications,” vol. 6, no. February, 2019, doi: 10.1016/j.mtla.2019.100323. [Google Scholar]
- N. Moshokoa, L. Raganya, B. A. Obadele, R. Machaka, and M. E. Makhatha, “Microstructural and mechanical properties of Ti-Mo alloys designed by the cluster plus glue atom model for biomedical application,” Int. J. Adv. Manuf. Technol., 2020, doi: 10.1007/s00170-020-06208-7. [Google Scholar]
- P. J. Bania and W. M. Parris, “High strength alpha-beta titanium-base alloy.” Google Patents, Jul. 24, 1990. [Google Scholar]
- H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito, “First- principles calculations for development of low elastic modulus Ti alloys,” Phys. Rev. B, vol. 70, no. 17, p. 174113, 2004. [CrossRef] [Google Scholar]
- F. F. Cardoso, P. L. Ferrandini, E. S. N. Lopes, A. Cremasco, and R. Caram, “Ti – Mo alloys employed as biomaterials : Effects of composition and aging heat treatment on microstructure and mechanical behavior,” J. Mech. Behav. Biomed. Mater., vol. 32, pp.31–38, 2014, doi: 10.1016/j.jmbbm.2013.11.021. [CrossRef] [Google Scholar]
- C. H. Wang et al., “Martensitic microstructures and mechanical properties of as- quenched metastable b -type Ti – Mo alloys,” pp.6886–6896, 2016, doi: 10.1007/s10853-016-9976-6. [Google Scholar]
- X. Zhao, M. Niinomi, M. Nakai, and J. Hieda, “Acta Biomaterialia Beta type Ti – Mo alloys with changeable Young ’ s modulus for spinal fixation applications,” Acta Biomater., vol. 8, no. 5, pp.1990–1997, 2012, doi: 10.1016/j.actbio.2012.02.004. [CrossRef] [Google Scholar]
- R. Davis, H. M. Flower, and D. R. F. West, “Martensitic transformations in Ti-Mo alloys,” J. Mater. Sci., vol. 14, no. 3, pp.712–722, 1979, doi: 10.1007/BF00772735. [CrossRef] [Google Scholar]
- Y. L. Zhou and D. M. Luo, “Microstructures and mechanical properties of Ti-Mo alloys cold-rolled and heat treated,” Mater. Charact., vol. 62, no. 10, pp.931–937, 2011, doi: 10.1016/j.matchar.2011.07.010. [CrossRef] [Google Scholar]
- F. Sun, F. Prima, and T. Gloriant, “High-strength nanostructured Ti – 12Mo alloy from ductile metastable beta state precursor,” Mater. Sci. Eng. A, vol. 527, no. 16– 17, pp.4262–4269, 2010, doi: 10.1016/j.msea.2010.03.044. [CrossRef] [Google Scholar]
- J. M. Bennett, “Strengthening of metastable beta titanium alloys,” no. October, 2018. [Google Scholar]
- M. Sabeena, A. George, S. Murugesan, R. Divakar, E. Mohandas, and M. Vijayalakshmi, “Microstructural characterization of transformation products of bcc b in Ti-15 Mo alloy,” J. Alloys Compd., vol. 658, pp.301–315, 2016, doi: 10.1016/j.jallcom.2015.10.200. [CrossRef] [Google Scholar]
- J. Ruzic, S. Emura, X. Ji, and I. Watanabe, “Materials Science & Engineering A Mo segregation and distribution in Ti – Mo alloy investigated using nanoindentation,” Mater. Sci. Eng. A, vol. 718, no. July 2017, pp.48–55, 2018, doi: 10.1016/j.msea.2018.01.098. [CrossRef] [Google Scholar]
- J. Gao et al., “Segregation mediated heterogeneous structure in a metastable β titanium alloy with a superior combination of strength and ductility,” Sci. Rep., no. April, pp.1–11, 2018, doi: 10.1038/s41598-018-25899-3. [Google Scholar]
- R. Graft WH, DW lEVINSON, “The influence of alloying on the elastic modulus of titanium alloys,” Trans. Nonferrous Met. Soc. China, 1957. [Google Scholar]
- Y. T. Lee, M. Peters, and G. Wirth, “Effects of thermomechanical treatment on microstructure and mechanical properties of blended elemental Ti-6Al-4V compacts,” Mater. Sci. Eng., vol. 102, no. 1, pp.105–114, 1988, doi: 10.1016/0025-5416(88)90538–1. [CrossRef] [Google Scholar]
- W. Ho, “Effect of omega phase on mechanical properties of Ti-Mo alloys for biomedical applications,” J. Med. Biol. Eng., vol. 28, no. 1, p. 47, 2008. [Google Scholar]
- H. Hsu, S. Wu, S. Hsu, W. Kao, and W. Ho, “Materials Science & Engineering A Structure and mechanical properties of as-cast Ti – 5Nb-based alloy with Mo addition,” Mater. Sci. Eng. A, vol. 579, pp.86–91, 2013, doi: 10.1016/j.msea.2013.05.004. [CrossRef] [Google Scholar]
- D. J. Lin, J. H. Chern Lin, and C. P. Ju, “Structure and properties of Ti-7.5Mo-xFe alloys,” Biomaterials, vol. 23, no. 8, pp.1723–1730, 2002, doi: 10.1016/S0142-9612(01)00233–2. [CrossRef] [Google Scholar]
- C. L. J. Lee CM, Ju CP, “Structure-property relstionship of cast Ti-Nb alloys,” J. oral rahabilitation, 2002, doi: https://doi.org/10.1046/j.1365-2842.2002.00825.x. [Google Scholar]
- A. Panigrahi, “DISSERTATION / DOCTORAL THESIS „ Mechanical properties and phase transformation of severe plastic deformation “,” pp.1–116, 2016. [Google Scholar]
- H. Hsu, S. Wu, S. Hsu, J. Syu, and W. Ho, “Materials Science & Engineering A The structure and mechanical properties of as-cast Ti – 25Nb – x Sn alloys for biomedical applications,” Mater. Sci. Eng. A, vol. 568, pp.1–7, 2013, doi: 10.1016/j.msea.2013.01.002. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.