Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 13 | |
Section | Material Development | |
DOI | https://doi.org/10.1051/matecconf/202440603003 | |
Published online | 09 December 2024 |
Using the Cluster-Plus-Glue-Atom model to design the composition of low Young’s modulus β-Ti alloys for orthopaedic applications
1 Advanced Materials and Engineering, Manufacturing Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
2 Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
* Corresponding authors: muchavinola@gmail.com and EMakhatha@uj.ac.za
The design and development of metastable β-type Ti alloys with low Young’s moduli (E) requires the use of multiple β-phase stabilising alloying elements. The most commonly used alloy development design strategies do not provide accurate composition design. Moreover, the process of developing alloys is still based on empirical exploration, which is costly and time consuming. In this study, the cluster-plus-glue-atom (CPGA) model was employed in the composition design and interpretation of low-E, β-type Ti based alloys. Microstructure, phase analysis, Young’s modulus (mechanical testing and nano-indentation testing) of the as-cast alloys were investigated. The results demonstrated that the CPGA model was effective in formulating compositions which were able to simultaneously achieve high β-phase stability and low-E as exemplified by the [(Mo0.4Sn0.6) (Ti)14] (Nb)1 alloy which obtained a Young’s modulus of 59 GPa.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.