Open Access
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 03015
Number of page(s) 14
Section Material Development
Published online 01 December 2022
  1. Balos, S. and Sidjanin, L. (2014) ‘Effect of tunneling defects on the joint strength efficiency obtained with FSW’, Materiali in Tehnologije, 48(4), pp.491–496. [Google Scholar]
  2. Baratzadeh, F. et al. (2020) ‘Investigation of mechanical properties of AA6082- T6/AA6063-T6 friction stir lap welds’, Journal of Advanced Joining Processes, 1(November 2019), p. 100011. [Google Scholar]
  3. Baruah, M. and Borah, A. (2020) ‘Processing and precipitation strengthening of 6xxx series aluminium alloys: A review’, International Journal of Materials Science, 1(1), pp.40–48. [CrossRef] [Google Scholar]
  4. Behaviour, S. et al. (2020) ‘Cold-Rolling Strain Hardening Effect on the Microstructure, Serration-Flow Behaviour and Dislocation Density of Friction Stir Welded AA5083’, metals. [Google Scholar]
  5. Cueca, F. et al. (2012) ‘Study of the weld ability of aluminum alloy 5083 H116 with pulsed arc GMAW (GMAW-P)’, Ciencia y tecnología de buques, 6(11), p. 43. [Google Scholar]
  6. Dong, P. et al. (2013) ‘Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy’, JOURNAL OF MATERIALS&DESIGN, 45, pp.524–531. [Google Scholar]
  7. Ghalehbandi, S. M. and Malaki, M. (2019) applied sciences Accumulative Roll Bonding – A Review. [Google Scholar]
  8. Gungor, B. et al. (2014) ‘Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys’, Materials and Design, 56, pp.84–90. [CrossRef] [Google Scholar]
  9. Hao, J. et al. (2021) ‘Calculation based on the formation of mg2 si and its effect on the microstructure and properties of al–si alloys’, Materials, 14(21). [Google Scholar]
  10. Kalinenko, A. et al. (2021) ‘Materials Science & Engineering A Relationship between welding conditions, abnormal grain growth and mechanical performance in friction-stir welded 6061-T6 aluminum alloy’, 817(April). [Google Scholar]
  11. Kawasaki, M. and Langdon, T. G. (2018) ‘Fabrication of High Strength Hybrid Materials through the Application of High-Pressure Torsion’, 134(3). [Google Scholar]
  12. Kim, H. S. et al. (2004) ‘Process Modelling of Equal Channel Angular Pressing for Ultrafine Grained Materials’, 45(7), pp.2172–2176. [Google Scholar]
  13. Kurzydłowski, K. J. (2004) ‘Microstructural refinement and properties of metals processed by severe plastic deformation’, 52(4), pp.301–311. [Google Scholar]
  14. Laska, A. et al. (2022) ‘Resistance of Friction Stir-Welded AA6082’, pp. 1–16. [Google Scholar]
  15. M. S. Mahany, Reham Reda Abbas, M.M.Z. Ahmed, A. (2017) ‘Influence of Tool Rotational Speed and Axial Load in Friction Stir Welding (Fsw) of High Strength Aluminum Alloys’, International Journal of Research in Engineering and Technology, 06(02), pp.114–120. [Google Scholar]
  16. Naumov, A. et al. (2019) ‘Metallurgical and mechanical characterization of high- speed friction stir welded AA 6082-T6 aluminum alloy’, Materials, 12(24). [Google Scholar]
  17. Nginda, S. and Pita, M. (2022) ‘Investigation of the Mechanical Properties of Aluminum AA4007 Joints Using the MIG and FSW Processes’, 2022 IEEE 13th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2022, pp.11–14. [Google Scholar]
  18. Ortiz, D. et al. (2007) ‘Effect of cold work on the tensile properties of 6061, 2024, and 7075 Al alloys’, Journal of Materials Engineering and Performance, 16(5), pp.515–520. [CrossRef] [Google Scholar]
  19. Piccini, J. M. and Svoboda, H. G. (2015) ‘Effect of the Tool Penetration Depth in Friction Stir Spot Welding (FSSW) of Dissimilar Aluminum Alloys’, Procedia Materials Science, 8, pp.868–877. [CrossRef] [Google Scholar]
  20. Pita, M, P.M Mashinini, L. . T. (2020) ‘The effect of surface temperature and particle size on mechanical properties during accumulative roll bonding of Al 1050- H4 aluminum alloy’, pp.13–17. [Google Scholar]
  21. Pita, M., Mashinini, P. M. and Tartibu, L. K. (2020) ‘Enhancing of aluminum alloy 1050-H4 tensile strength by accumulative roll bonding process’, Proceedings of 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2020, pp.31–35. [Google Scholar]
  22. Qassab, R. M. Al and Qassab, R. M. Al (2017) Effect of Cold Work on Tensile Properties During Annealing Process for Pure Commercial Aluminum (AA 1070 Alloy) Effect of Cold Work on Tensile Properties During Annealing Process for Pure Commercial Aluminum (AA 1070 Alloy). [Google Scholar]
  23. Sun, Y. et al. (2009) ‘Effect of initial grain size on the joint properties of friction stir welded aluminum’, Materials Science and Engineering A, 527(1–2), pp. 317– 321. [Google Scholar]
  24. Valiev, R. Z., Islamgaliev, R. K. and Alexandrov, I. V (2000) Bulk nanostructured materials from severe plastic deformation. [Google Scholar]
  25. Wang, T. et al. (2021) ‘Microstructure and mechanical properties of powder metallurgy 2024 aluminum alloy during cold rolling’, Journal of Materials Research and Technology, 15, pp.3337–3348. [CrossRef] [Google Scholar]
  26. Yu, P., Wu, C. and Shi, L. (2021) ‘Acta Materialia Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates’, 207. [Google Scholar]
  27. Zhu, X. et al. (2019) ‘The effects of varying Mg and Si levels on the microstructural inhomogeneity and eutectic Mg2Si morphology in die-cast Al–Mg–Si alloys’, Journal of Materials Science, 54(7), pp.5773–5787. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.