Open Access
Issue |
MATEC Web Conf.
Volume 366, 2022
8th International BAPT Conference “Power Transmissions 2022”
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 14 | |
Section | Design, Analysis, Simulation and Optimization | |
DOI | https://doi.org/10.1051/matecconf/202236601003 | |
Published online | 06 October 2022 |
- Yeh, T., Yang, D. C. H., & Tong, S.-H. (2001). Design of new tooth profiles for high-load capacity gears. Mechanism and Machine Theory, 36(10), 1105–1120. https://doi.org/10.1016/S0094-114X(01)00041-6 [CrossRef] [Google Scholar]
- Luo, S., Wu, Y., & Wang, J. (2008). The generation principle and mathematical models of a novel cosine gear drive. Mechanism and Machine Theory, 43(12), 1543–1556. https://doi.org/10.1016/j.mechmachtheory.2007.12.007 [CrossRef] [Google Scholar]
- Komori, T., Ariga, Y., & Nagata, S. (1990). A New Gears Profile Having Zero Relative Curvature at Many Contact Points (LogiX Tooth Profile). Journal of Mechanical Design, 112(3), 430–436. https://doi.org/10.1115/1.2912626 [CrossRef] [Google Scholar]
- Spitas, V., Costopoulos, T., & Spitas, C. (2005). Increasing the Strength of Standard Involute Gear Teeth with Novel Circular Root Fillet Design. American Journal of Applied Sciences, 2, 1058–1064. https://doi.org/10.3844/ajassp.2005.1058.1064 [CrossRef] [Google Scholar]
- Liu, L., Meng, F., & Ni, J. (2019). A novel noninvolute gear designed based on control of relative curvature. Mechanism and Machine Theory, 140, 144–158. https://doi.org/10.1016/j.mechmachtheory.2019.05.022 [CrossRef] [Google Scholar]
- Yokota, T., Taguchi, T., & Gen, M. (1998). A solution method for optimal weight design problem of the gear using genetic algorithms. Computers & Industrial Engineering, 35(3), 523–526. https://doi.org/10.1016/S0360-8352(98)00149-1 [CrossRef] [Google Scholar]
- Savsani, V., Rao, R. V., & Vakharia, D. P. (2010). Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mechanism and Machine Theory, 45(3), 531–541. https://doi.org/10.1016/j.mechmachtheory.2009.10.010 [CrossRef] [Google Scholar]
- Mendi, F., Başkal, T., Boran, K., & Boran, F. E. (2010). Optimization of module, shaft diameter and rolling bearing for spur gear through genetic algorithm. Expert Systems with Applications, 37(12), 8058–8064. https://doi.org/10.1016/j.eswa.2010.05.082 [CrossRef] [Google Scholar]
- Spitas, V. A., Costopoulos, T. N., & Spitas, C. A. (2006). Optimum Gear Tooth Geometry for Minimum Fillet Stress Using BEM and Experimental Verification With Photoelasticity. Journal of Mechanical Design, 128(5), 1159–1164. https://doi.org/10.1115/1.2216731 [CrossRef] [Google Scholar]
- Spitas, V., & Spitas, C. (2007). Optimizing involute gear design for maximum bending strength and equivalent pitting resistance. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(4), 479–488. https://doi.org/10.1243/0954406JMES342 [CrossRef] [Google Scholar]
- Handschuh, R. F., & Zakrajsek, A. J. (2011). HighPressure Angle Gears: Comparison to Typical Gear Designs. Journal of Mechanical Design, 133(11). https://doi.org/10.1115/1.4004458 [CrossRef] [Google Scholar]
- Tavakoli, M. S., & Houser, D. R. (1986). Optimum Profile Modifications for the Minimization of Static Transmission Errors of Spur Gears. Journal of Mechanisms, Transmissions, and Automation in Design, 108(1), 86–94. https://doi.org/10.1115/1.3260791 [CrossRef] [Google Scholar]
- Bonori, G., Barbieri, M., & Pellicano, F. (2008). Optimum profile modifications of spur gears by means of genetic algorithms. Journal of Sound and Vibration, 313(3), 603–616. https://doi.org/10.1016/j.jsv.2007.12.013 [CrossRef] [Google Scholar]
- Faggioni, M., Samani, F. S., Bertacchi, G., & Pellicano, F. (2011). Dynamic optimization of spur gears. Mechanism and Machine Theory, 46(4), 544–557. https://doi.org/10.1016/j.mechmachtheory.2010.11.005 [CrossRef] [Google Scholar]
- Ariga, Y., & Nagata, S. (1985). Load Capacity of a New W-N Gear with Basic Rack of Combined Circular and Involute Profile. Journal of Mechanisms, Transmissions, and Automation in Design, 107(4), 565–572. https://doi.org/10.1115/1.3260764 [CrossRef] [Google Scholar]
- Tsay, C.-B., & Fong, Z. H. (1991). Computer simulation and stress analysis of helical gears with pinion circular arc teeth and gear involute teeth. Mechanism and Machine Theory, 26(2), 145–154. https://doi.org/10.1016/0094-114X(91)90079-J [CrossRef] [Google Scholar]
- Hlebanja, J. (1976). Konkav-konvexe Verzahnung: Ermitlung der Zahnflanken und einige Grenzfälle. Antriebstechnik, vol. 15, no. 6, p. 324-329. [Google Scholar]
- Litvin, F. L., Feng, P. H., & Lagutin, S. A. (2000). Computerized generation and simulation of meshing and contact of new type of NovikovWildhaber helical gears. ILLINOIS UNIV AT CHICAGO. [Google Scholar]
- Litvin, F. L., & Lu, J. (1993). Computerized simulation of generation, meshing and contact of double circular-arc helical gears. Mathematical and Computer Modelling, 18(5), 31–47. https://doi.org/10.1016/0895-7177(93)90131-H [CrossRef] [Google Scholar]
- Yang, S.-C. (2009). Mathematical model of a stepped triple circular-arc gear. Mechanism and Machine Theory, 44(5), 1019–1031. https://doi.org/10.1016/j.mechmachtheory.2008.05.013 [CrossRef] [Google Scholar]
- Wang, J., Liang, H., Luo, S., & Wu, R. Y. (2013). Active design of tooth profiles using parabolic curve as the line of action. Mechanism and Machine Theory, 67, 47–63. https://doi.org/10.1016/j.mechmachtheory.2013.04.002 [CrossRef] [Google Scholar]
- Sheng, W., Li, Z., Zhang, H., & Zhu, R. (2021). Geometry and design of spur gear drive associated with low sliding ratio. Advances in Mechanical Engineering, 13(4), 16878140211012548. https://doi.org/10.1177/16878140211012547 [CrossRef] [Google Scholar]
- Wang, P.-Y., & Fong, Z.-H. (2005). Fourth-Order Kinematic Synthesis for Face-Milling Spiral Bevel Gears With Modified Radial Motion (MRM) Correction. Journal of Mechanical Design, 128(2), 457–467. https://doi.org/10.1115/1.2168466 [Google Scholar]
- Zhang-Hua, F., Ta-Wei, C., & Chieh-Wen, T. (2002). Mathematical model for parametric tooth profile of spur gear using line of action. Mathematical and Computer Modelling, 36(4), 603–614. https://doi.org/10.1016/S0895-7177(02)00185-1 [CrossRef] [Google Scholar]
- Tsai, M.-H., & Tsai, Y.-C. (1998). Design of highcontact-ratio spur gears using quadratic parametric tooth profiles. Mechanism and Machine Theory, 33(5), 551–564. https://doi.org/10.1016/S0094-114X(97)00071-2 [CrossRef] [Google Scholar]
- Wang, J., Luo, S., & Wu, Y. (2010). A Method for the Preliminary Geometric Design of Gear Tooth Profiles With Small Sliding Coefficients. Journal of Mechanical Design, 132(5). https://doi.org/10.1115/1.4001410 [Google Scholar]
- Yu, B., & Ting, K. (2013). Free-Form Conjugation Modeling and Gear Tooth Profile Design. Journal of Mechanisms and Robotics, 5(1). https://doi.org/10.1115/1.4007490 [CrossRef] [Google Scholar]
- de Boor, C. (1972). On calculating with B-splines. Journal of Approximation Theory, 6(1), 50–62. https://doi.org/10.1016/0021-9045(72)90080-9 [CrossRef] [Google Scholar]
- Schoenberg, I. J. (1988). Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions. In C. de Boor (Ed.), I. J. Schoenberg Selected Papers (pp. 3–57). Birkhäuser. https://doi.org/10.1007/978-1-4899-0433-1_1 [CrossRef] [Google Scholar]
- Buckingham, E. (1988). Analytical Mechanics of Gears. Courier Corporation. [Google Scholar]
- Spitas, V., Costopoulos, T., & Spitas, C. (2007). Fast modeling of conjugate gear tooth profiles using discrete presentation by involute segments. Mechanism and Machine Theory, 42(6), 751–762. https://doi.org/10.1016/j.mechmachtheory.2006.05.007 [CrossRef] [Google Scholar]
- Spitas, V., Costopoulos, T., & Spitas, C. (2002). A quick and efficient algorithm for the calculation of gear profiles based on flank involutization. 4th GRACM National Congress on Computational Mechanics, Proceedings. [Google Scholar]
- Weibring, M., Gondecki, L., & Tenberge, P. (2019). Simulation of fatigue failure on tooth flanks in consideration of pitting initiation and growth. Tribology International, 131, 299–307. https://doi.org/10.1016/j.triboint.2018.10.029 [CrossRef] [Google Scholar]
- Townsend, D. P. Dudley’s gear handbook, 1992. McGraw-Hill Inc., 3(3.9), 4-18. [Google Scholar]
- Purohit, G., Sherry, A., & Saraswat, M. (2013). Optimization of Function by using a New MATLAB based Genetic Algorithm Procedure. International Journal of Computer Applications, 61, 1–5. https://doi.org/10.5120/10001-4212 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.