Open Access
Issue
MATEC Web Conf.
Volume 361, 2022
Concrete Solutions 2022 – 8th International Conference on Concrete Repair, Durability & Technology
Article Number 05010
Number of page(s) 8
Section Theme 5 - Concrete and Admixture Technology
DOI https://doi.org/10.1051/matecconf/202236105010
Published online 30 June 2022
  1. J.Y. Wang, D. Snoeck, S. Van Vlierberghe, W. Verstraete, N. De Belie, Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete, Constr. Build. Mater. 68 (2014) 110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018. [CrossRef] [Google Scholar]
  2. N. De Belie, Application of bacteria in concrete: a critical evaluation of the current status, RILEM Tech. Lett. 1 (2016) 56. https://doi.org/10.21809/rilemtechlett.2016.14. [CrossRef] [Google Scholar]
  3. J. Wang, Y.C. Ersan, N. Boon, N. De Belie, Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability, Appl. Microbiol. Biotechnol. 100 (2016) 2993–3007. https://doi.org/10.1007/s00253-016-7370-6. [CrossRef] [Google Scholar]
  4. H.W. Reinhardt, M. Jooss, Permeability and self-healing of cracked concrete as a function of temperature and crack width, Cem. Concr. Res. 33 (2003) 981–985. https://doi.org/10.1016/S0008-8846(02)01099-2. [CrossRef] [Google Scholar]
  5. J.Y. Wang, H. Soens, W. Verstraete, N. De Belie, Self-healing concrete by use of microencapsulated bacterial spores, Cem. Concr. Res. 56 (2014) 139–152. https://doi.org/10.1016/j.cemconres.2013.11.009. [CrossRef] [Google Scholar]
  6. V. Achal, X. Pan, N. Özyurt, Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation, Ecol. Eng. 37 (2011) 554–559. https://doi.org/10.1016/j.ecoleng.2010.11.009. [CrossRef] [Google Scholar]
  7. S.J. Park, Y.M. Park, W.Y. Chun, W.J. Kim, S.Y. Ghim, Calcite-forming bacteria for compressive strength improvement in mortar, J. Microbiol. Biotechnol. 20 (2010) 782–788. https://doi.org/10.4014/jmb.0911.11015. [Google Scholar]
  8. H.M. Jonkers, A. Thijssen, G. Muyzer, O. Copuroglu, E. Schlangen, Application of bacteria as self-healing agent for the development of sustainable concrete, Ecol. Eng. 36 (2010) 230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036. [CrossRef] [Google Scholar]
  9. N. Chahal, R. Siddique, A. Rajor, Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume, Constr. Build. Mater. 37 (2012) 645–651. https://doi.org/10.1016/j.conbuildmat.2012.07.029. [CrossRef] [Google Scholar]
  10. V. Achal, A. Mukherjee, P.C. Basu, M.S. Reddy, Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii, J. Ind. Microbiol. Biotechnol. 36 (2009) 433–438. https://doi.org/10.1007/s10295-008-0514-7. [CrossRef] [Google Scholar]
  11. J.Y. Wang, N. De Belie, W. Verstraete, Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete, J. Ind. Microbiol. Biotechnol. 39 (2012) 567–577. https://doi.org/10.1007/s10295-011-1037-1. [CrossRef] [Google Scholar]
  12. H.M. Jonkers, A. Thijssen, Bacteria Mediated of Concrete Strutures, 2nd Int. Symp. Serv. Life Des. Infrastruct. 4-6 Oct. 2010, Delft, Netherlands. (2010) 833–840. [Google Scholar]
  13. S.C. Hunt, Method and system for bioremediation of contaminated soil using inoculated diatomaceous earth, (1996). [Google Scholar]
  14. F. Lo Monte, L. Ferrara, Self-healing characterization of UHPFRCC with crystalline admixture: Experimental assessment via multi-test/multi-parameter approach, Constr. Build. Mater. 283 (2021) 122579. https://doi.org/10.1016/j.conbuildmat.2021.122579. [CrossRef] [Google Scholar]
  15. C. Litina, G. Bumanis, G. Anglani, M. Dudek, R. Maddalena, M. Amenta, S. Papaioannou, G. Pérez, J.L.G. Calvo, E. Asensio, R.B. Cobos, F.T. Pinto, A. Augonis, R. Davies, A. Guerrero, M.S. Moreno, T. Stryszewska, I. Karatasios, J.M. Tulliani, P. Antonaci, D. Bajare, A. Al‐tabbaa, Evaluation of methodologies for assessing self‐healing performance of concrete with mineral expansive agents: An interlaboratory study, Materials (Basel). 14 (2021). https://doi.org/10.3390/ma14082024. [CrossRef] [Google Scholar]
  16. H. Doostkami, M. Roig-Flores, P. Serna, Self-healing efficiency of Ultra High-Performance Fiber-Reinforced Concrete through permeability to chlorides, Constr. Build. Mater. 310 (2021) 125168. https://doi.org/10.1016/j.conbuildmat.2021.125168. [CrossRef] [Google Scholar]
  17. A. Negrini, M. Roig-Flores, E.J. Mezquida-Alcaraz, L. Ferrara, P. Serna, Effect of crack pattern on the self-healing capability in traditional, HPC and UHPFRC concretes measured by water and chloride permeability, MATEC Web Conf. 289 (2019) 01006. https://doi.org/10.1051/matecconf/201928901006. [CrossRef] [EDP Sciences] [Google Scholar]
  18. H. Doostkami, S. Formagini, J.E. Cumberbatch, M. Roig-Flores, P. Serna, Self-healing capability of conventional and high-performance concrete containing sap by means of water permeability, Fib Int. Congr. 2022 Oslo. (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.