Open Access
Issue
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
Article Number 03070
Number of page(s) 14
Section Computing Methods and Computer Application
DOI https://doi.org/10.1051/matecconf/202235503070
Published online 12 January 2022
  1. Zheng Y, Yang G, Cui H, et al. Pneumatic stability analysis of single-pad aerostatic thrust bearing with pocketed orifice[J]. Proc IMechE, Part J: J Engineering Tribology, 2020, 234(12): 1857-1866. [CrossRef] [Google Scholar]
  2. Ishibashi K, Kondo A, Kawada S, et al. Static and dynamic characteristics of a downsized aerostatic circular thrust bearing with a single feed hole[J]. Precis Eng, 2019, 60: 448-457. [CrossRef] [Google Scholar]
  3. Li Y, Zhao J, Zhu H. Numerical analysis and experimental study on the micro vibration of an aerostatic thrust bearing with a pocketed orifice-type restrictor[J]. Proc IMechE, Part J: J Engineering Tribology, 2014; 229: 609-623. [Google Scholar]
  4. Zhang J, Han D, Song M, et al. Theoretical and experimental investigation on the effect of supply pressure on the nonlinear behaviors of the aerostatic bearing-rotor system[J]. Mech Syst Signal Process, 2021, 158 [Google Scholar]
  5. Maamari N, Krebs A, Weikert S, et al. Stability and dynamics of an orifice based aerostatic bearing with a compliant back plate[J]. Tribol Int, 2019, 138: 279-296. [CrossRef] [Google Scholar]
  6. Gao Q, Qi L, Gao S, et al. A FEM based modeling method for analyzing the static performance of aerostatic thrust bearings considering the fluid-structure interaction[J]. Tribol Int, 2021, 156. [Google Scholar]
  7. Zhang J, Zou D, Ta N, et al. Numerical research of pressure depression in aerostatic thrust bearing with inherent orifice[J]. Tribol Int, 2018, 123: 385-396. [CrossRef] [Google Scholar]
  8. Lai T, Peng X, Liu J, et al. Design optimization of high-precision aerostatic equipment based on orifice restriction[J]. Proc Inst Mech Eng C: J Mechanical Engineering Science, 2019, 233(10): 3459-3474. [CrossRef] [Google Scholar]
  9. Chen D, Han J, Dong L, et al. An evaluation system of the eccentric orbit of shaft with aerostatic bearing in the microscale[J]. Proc IMechE, Part J: J Engineering Tribology, 2018, 232(2): 155-165. [CrossRef] [Google Scholar]
  10. Zha C, Li T, Zhao Y, et al. Influence of microscale effect on the radial rotation error of aerostatic spindle[J]. Proc IMechE, Part J: J Engineering Tribology, 2020, 234(7): 1131-1142. [CrossRef] [Google Scholar]
  11. Cui H, Wang Y, Yue X. Numerical analysis of the dynamic performance of aerostatic thrust bearings with different restrictor[J]. Proc IMechE, Part J: J Engineering Tribology, 2019; 233(3): 406-423. [CrossRef] [Google Scholar]
  12. Ise T, Nakatsuka M, Nagao K, et al. Externally pressurized gas journal bearing with slot restrictor arranged in the axial direction[J]. Precis Eng, 2017; 50:286-292. [CrossRef] [Google Scholar]
  13. Duan L and Xu M. Study on static performance of gas-lubricated thrust bearing based on multi-microporous stainless steel plate[J]. J Braz Soc Mech Sci, 2021, 43(5) [Google Scholar]
  14. Wang W, Chen X, Zhang M, et al. Effect of the deformation of porous materials on the performance of aerostatic bearings by fluid-solid interaction method[J]. Tribol Int, 2020, 150. [Google Scholar]
  15. Wu D, Tao J. Research on key technologies of porous aerostatic thrust bearings. China Academy of Engineering Physics, 2010(in Chinese). [Google Scholar]
  16. Hosokawa T, Somaya K, Miyatake M, et al. Static characteristics of aerostatic thrust bearings with multiple porous materials inlet ports[J]. J Tribol, 2015; 137: 3698-3703. [CrossRef] [Google Scholar]
  17. Silva L, Panzera T, Vieira L. Carbon nanotubes and superplasticizer reinforcing cementitious composite for aerostatic porous bearing[J]. Proc IMechE, Part J: J Engineering Tribology, 2017; 11: 1397-1407. [CrossRef] [Google Scholar]
  18. Zheng Y, Yang G, Cui H, et al. Improving the stiffness of the aerostatic thrust bearing by using a restrictor with multi-orifice series[J]. Proc IMechE, Part J: J Engineering Tribology, 2020, 234(12): 1881-1891. [CrossRef] [Google Scholar]
  19. Gao S, Shang Y, Gao Q, et al. CFD-Based Investigation on Effects of Orifice Length-Diameter Ratio for the Design of Hydrostatic Thrust Bearings[J]. Appl Sci, 2021, 11(3), 959-977. [CrossRef] [Google Scholar]
  20. Kodnyanko V, Shatokhin S, Kurzakov A, et al. Theoretical analysis of compliance and dynamics quality of a lightly loaded aerostatic journal bearing with elastic orifices[J]. Precis Eng, 2021, 68: 72-81. [CrossRef] [Google Scholar]
  21. Rowe W B. Conical hydrostatic journal bearings for high speeds[J]. Proc IMechE, Part J: J Engineering Tribology, 2021, 235(4): 808-819. [CrossRef] [Google Scholar]
  22. Gao S, Cheng K, Chen S, et al. CFD based investigation on influence of orifice chamber shapes for the design of aerostatic thrust bearings at ultra-high speed spindles[J]. Tribol Int, 2015; 92: 211-221. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.