Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 03070 | |
Number of page(s) | 14 | |
Section | Computing Methods and Computer Application | |
DOI | https://doi.org/10.1051/matecconf/202235503070 | |
Published online | 12 January 2022 |
Structure design and performance analysis of aerostatic thrust bearing with compound restrictors
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China
* Corresponding author: yuntangli@cjlu.edu.cn
Aerostatic thrust bearing compensated by multi-orifices and porous material restrictor simultaneously is proposed to improve the static performance of the bearing. Load Carrying Capacity (LCC), stiffness and the flow field characteristics of the bearing are obtained by Computational Fluid Dynamic (CFD) simulation. The influences of supply pressure, orifice number, orifice diameter, orifice distribution, porous material thickness and permeability coefficient on the bearing performance are analysed. It is indicated that LCC and stiffness of the bearing with compound restrictors are much higher than those of the bearing with porous material restrictor or multi-orifice restrictor if gas film thickness is in rational range. The bearing with compound restrictors has better stability than that of the bearing with multi-orifice restrictor. Moreover, the optimum bearing parameters with compound restrictors are given to improving the performance of aerostatic thrust bearing.
Key words: Aerostatic thrust bearing / Compound restrictors / Computational fluid dynamic / CFD / Load carrying capacity / LCC / Stiffness
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.