Open Access
Issue
MATEC Web Conf.
Volume 344, 2021
International Scientific and Practical Conference “Modern Problems and Directions of Development of Metal Science and Heat Treatment of Metals and Alloys, Dedicated to the Memory of Academician A. A. Baykov” (MPM 2021)
Article Number 01002
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/202134401002
Published online 01 October 2021
  1. E.V. Azarova, E.A. Levashov, V.G. Ralchenko, A.P. Bolshakov, E.E. Ashkinazi, Creation of strong adhesive diamond coatings on hard alloy by electric-spark alloying, Metallurgist, 2010, vol. 54, № 7-8, pp. 523-529. [CrossRef] [Google Scholar]
  2. Z. Qiao, X. Ma, W. Zhao, H. Tang, B. Zhao, Nanostructured novel cemented hard alloy obtained by mechanical alloying and hot-pressing sintering and its applications, Journal of Alloys and Compounds. 2008. vol. 462. No. 1-2. pp. 416-420. [CrossRef] [Google Scholar]
  3. S.S. Nayak, S.K. Pabi, M. Wollgarten, J. Banhart, B.S. Murty, Nanocomposites and an extremely hard nanocrystalline intermetallic of al-fe alloys prepared by mechanical alloying, Materials Science and Engineering: A, 2010, vol. 527, No. 9, pp. 2370-2378. [CrossRef] [Google Scholar]
  4. K. Maruyama, T. Nonaka, H.Y. Kim, Effects of α2 spacing on creep deformation characteristics of hard oriented pst crystals of tial alloy, Intermetallics, 2005, vol. 13, No. 10, pp. 1116-1121. [CrossRef] [Google Scholar]
  5. A. Shenhar, I. Gotman, S. Radin, P. Ducheyne, Microstructure and fretting behavior of hard tin-based coatings on surgical titanium alloys, Ceramics International, 2000, Т. 26, No. 7, pp. 709-713. [CrossRef] [Google Scholar]
  6. A.A. Lipatov, Reactive diffusion in cutting high-alloy steel by means of a hard-alloy tool, Russian Engineering Research, 2013, vol. 33, No. 3, pp. 144-149. [CrossRef] [Google Scholar]
  7. A.M. Adaskin, A.A. Vereshchaka, A.S. Vereshchaka, Study of wear mechanism of hard-alloy tools during machining of refractory alloys, Journal of Friction and Wear, 2013, vol. 34, No. 3, pp. 208-213. [CrossRef] [Google Scholar]
  8. V.L. Bibik, Forecasting of hard-alloyed cutting tool resistance based on thermal diffusivity, Materials Science Forum, 2013, vol. 762, pp. 777-781. [CrossRef] [Google Scholar]
  9. Nawaz W., Xu S., Huang B., Wu X., Wu Z., Li Y., “Nanotechnology and immunoengineering: how nanotechnology can boost car-t therapy“, Acta Biomaterialia. 2020. No. 109. pp. 21-36. [CrossRef] [Google Scholar]
  10. Povarova K.B. Powder Metallurgy of Tungsten Alloys, Proceedings of 3rd EURO PM 2004 Powder Metallurgy World Congress and Exhibition, 2004, No. 5, рр. 106-112. [Google Scholar]
  11. Antsiferova I.V., Esaulova I.A., “Nanotechnology research and education centers as an intellectual basis of nanotechnology in Russia“, Middle East Journal of Scientific Research. 2013. No. 13. pp. 127-131. [Google Scholar]
  12. Wong K.K.Y., Liu X., “Nanotechnology meets regenerative medicine: a new frontier?“, Nanotechnology Reviews. 2013. Т. 2. No. 1. pp. 59-71. [CrossRef] [Google Scholar]
  13. Balykina A.M., Rybalko V.V., Shelamov V.A., “Practical tasks of training of specialists for nanotechnology industry“, International Journal of Nanotechnology. 2019. Т. 16. No. 6-10. pp. 562-568. [CrossRef] [Google Scholar]
  14. Occhiutto M.L., Costa V.P., Maranhão R.C., Konstas A.G., “Nanotechnology for medical and surgical glaucoma therapy-a review, Advances in Therapy. 2020. Т. 37. No.1. pp. 155-199. [CrossRef] [Google Scholar]
  15. Phung C.D., Pham L.M., Jeong J.-H., Yong C.S., Kim J.O., Tran T.H., Nguyen H.T., “Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia“, Journal of Controlled Release. 2020. Т. 324. pp. 413-429. [CrossRef] [Google Scholar]
  16. Dar A.H., Rashid N., Dar M.A., Majid I., Hussain S., “Nanotechnology interventions in aquaculture and seafood preservation“, Critical Reviews in Food Science and Nutrition“, 2020. Т. 60. No. 11. pp. 1912-1921. [CrossRef] [Google Scholar]
  17. Desai P., Thumma N.J., Wagh P.R., Zhan S., Wang J., Prabhu S., Ann D., “Cancer chemoprevention using nanotechnology-based approaches“, Frontiers in Pharmacology. 2020. Т. 11. pp. 323. [CrossRef] [Google Scholar]
  18. Choubdar N., Avizheh S., “Nanotechnology based delivery systems of drugs currently used to treat alzheimer’s disease“, Nanoscience and Nanotechnology Asia. 2020. Т. 10. No. 3. pp. 228-247. [CrossRef] [Google Scholar]
  19. Khorev, A.I., “Alloying and heat treatment of structural (α + β) titanium alloys of high and superhigh strength“, Russian Engineering Research, 2010, vol. 30, No. 7, pp. 682-688. [CrossRef] [Google Scholar]
  20. E.V. Ageev, R.A. Latypov, Fabrication and investigation of carbide billets from powders prepared by electroerosive dispersion of tungsten-containing wastes, Russian Journal of Non-Ferrous Metals, 2014, vol. 55, No. 6, pp. 577–580. [CrossRef] [Google Scholar]
  21. E.V. Ageevа, E.V. Ageev, N.M. Horyakova, Morphology of copper powder produced by electrospark dispersion from waste, Russian Engineering Research, 2014, vol. 34, No. 11, pp. 694–696. [CrossRef] [Google Scholar]
  22. E.V. Ageev, R.A. Latypov, E.V. Ageevа, Investigation into the properties of electroerosive powders and hard alloy fabricated from them by isostatic pressing and sintering, Russian Journal of Non-Ferrous Metals, 2015, vol. 56, No. 1, pp. 52–62. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.