Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 04003
Number of page(s) 7
Section Tailings and Waste Disposal
DOI https://doi.org/10.1051/matecconf/202133704003
Published online 26 April 2021
  1. M. G. Donat, A. L. Lowry, L. V. Alexander, P. A. O’Gorman & N. Maher [2016]. More extreme precipitation events in the world’s dry and wet regions. Nature Climate Change. 6: 508-513, doi: 10.1038/nclimate2941 [Google Scholar]
  2. R. Morbidelli, C. Corradini, C. Saltalippi, A. Flammini, J. Dari, & R. S. Govindaraju [2018]. Rainfall infiltration modeling: A review. Water, 10. doi:10.3390/w10121873 [Google Scholar]
  3. A. Tsiampousi, L. Zdravkovic, & D. M. Potts [2017]. Numerical study of the effect of soil–atmosphere interaction on the stability and serviceability of cut slopes in London clay. Canadian Geotechnical Journal, 54(3), 405–418. https://doi.org/10.1139/cgj-2016-0319 [Google Scholar]
  4. D. M. Potts, L. Zdravkovic [1999]. Finite element analysis in geotechnical engineering. Thomas Telfrord Publishing. London, UK [Google Scholar]
  5. P.G.C. Smith [2003]. Numerical analysis of infiltration into partially saturated soil slopes. PhD Thesis, Imperial College London, University of London. [Google Scholar]
  6. A. Tsiampousi, P.G.C. Smith & D. M. Potts [2017]. Coupled consolidation in unsaturated soils: An alternative approach to deriving the Governing Equations. Computers and Geotechnics, 84: 238–255. doi: 10.1016/j.compgeo.2016.10.007 [Google Scholar]
  7. A. Tsiampousi, P.G.C. Smith & D. M. Potts [2017]. Coupled consolidation in unsaturated soils: From a conceptual model to applications in boundary value problems. Computers and Geotechnics, 84: 256–277. doi: 10.1016/j.compgeo.2016.10.008 [Google Scholar]
  8. L. Zdravkovic, A. Tsiampousi & D. M. Potts [2018]. On the modelling of soil-atmosphere interaction in cut and natural slopes. 7th Int. Conf. on Unsaturated Soils, UNSAT 2018; Eds. Ng CWW, Leung A.K., Chiu A.C.F., Zhou C., Hong Kong. [Google Scholar]
  9. P.G.C. Smith, D. M. Potts, & T. I. Addenbrooke [2008]. A precipitation boundary condition for finite element analysis. Unsaturated Soils: Advances in Geo-Engineering - Proceedings of the 1st European Conference on Unsaturated Soils, E-UNSAT 2008, 773–778. doi: 10.1201/9780203884430.ch105 [Google Scholar]
  10. V. P. Nyambayo, & D. M. Potts [2010]. Numerical simulation of evapotranspiration using a root water uptake model. Computers and Geotechnics, 37(1–2): 175–186. doi: 10.1016/j.compgeo.2009.08.008 [Google Scholar]
  11. R. A. Feddes, P. J. Kowalk & H. Zaradny [1978]. Simulation of field water use and crop yield. New York, John Wiley & Sons. [Google Scholar]
  12. R. G. Allen, L. S. Pereira, D. Raes & M. Smith [1998]. FAO Irrigation and Drainage Paper No. 56. Crop Evapotranspiration. [Google Scholar]
  13. D. M. G. Taborda, D. M. Potts & L. Zdravković [2016]. On the assessment of energy dissipated through hysteresis in finite element analysis. Computers and Geotechnics, 71:180–194. doi:10.1016/j.compgeo.2015.09.001 [Google Scholar]
  14. A. Tsiampousi, L. Zdravkovic & D. M. Potts [2013]. A new Hvorslev surface for critical state type unsaturated and saturated constitutive models. Computers and Geotechnics, 48:156–166. https://doi.org/10.1016/j.compgeo.2012.09.010 [Google Scholar]
  15. E. E. Alonso, A. Gens & A. Josa [1990]. A constitutive model for partially saturated soils. Geotechnique, 40(3):405–430. https://doi.org/10.1680/geot.1991.41.2.273 [Google Scholar]
  16. K. Georgiadis, D. M. Potts & L. Zdravković [2005]. Three-Dimensional Constitutive Model for Partially and Fully Saturated Soils. Geotechnique, 244(11): 2–3. https://doi.org/10.1061/(ASCE)1532-3641(2005)5 [Google Scholar]
  17. A. Tsiampousi, L. Zdravković & D. M. Potts [2013]. Variation with time of the factor of safety of slopes excavated in unsaturated soils. Computers and Geotechnics, 48:167–178. https://doi.org/10.1016/j.compgeo.2012.08.005 [Google Scholar]
  18. A. R. Estabragh & A. A. Javadi [2008]. Critical state for overconsolidated unsaturated silty soil. Canadian Geotechnical Journal, 45(3): 408–420. https://doi.org/10.1139/T07-105 [Google Scholar]
  19. N. Kovacevic, D. W. Hight & D. M. Potts [2011]. Predicting the stand-up time of temporary London clay slopes at terminal 5, Heathrow airport. Stiff Sedimentary Clays: Genesis and Engineering Behaviour - Geotechnique Symposium in Print 2007, 5(1), 241–252. doi: 10.1680/ssc.41080.0022 [Google Scholar]
  20. A. Yildiz, R. Stirling [2020]. Meteorological data collected at Lysimeter 10. Newcastle University. Dataset. https://doi.org/10.25405/data.ncl.12593768.v2 [Google Scholar]
  21. R. Monjo [2016]. Measure of rainfall time structure using the dimensionless n-index. Climate Research. 67(1): 71–86. doi:10.3354/cr01359 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.