Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 04002
Number of page(s) 8
Section Tailings and Waste Disposal
Published online 26 April 2021
  1. J.P. Giroud & R. Bonaparte (1989). Leakage through liners constructed with geomembranes, part II: composite liners. Geotextiles and Geomembranes. 8, 71–111. [Google Scholar]
  2. T. Abichou, C. Benson, & T. Edil (2002). Microstructure and hydraulic conductivity of simulated sand–bentonite mixtures. Clays, and Clay Minerals, 50(5), 537–545. [Google Scholar]
  3. A. Al-Rawas, Y. Mohamedzein, A. Al-Shabibi & S. Al-Katheiri (2006). Sand–Attapulgite Clay Mixtures as a Landfill Liner. Geotechnical and Geological Engineering. 24: 1365–1383. [Google Scholar]
  4. R. Stern & C. Shackelford (1998). Permeation of sand-processed clay mixtures with calcium chloride solutions. J. of Geotechnical and Geoenvironmental Engineering. 124:3, 231–241. [Google Scholar]
  5. D. Kolstad, C. Benson, T. Edil (2004). Hydraulic conductivity and swell of nonprehydrated GCLs permeated with multi-species inorganic solutions. J. Geotech. Geoenviron. Eng. 130:12, 1236–1249. doi: 10.1061/(ASCE)1090-0241 (2004)130:12(1236). [Google Scholar]
  6. J. Scalia & C. Benson (2011). Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers with composite barriers. J. Geotech. Geoenviron. Eng. 1943, 1–13. doi: 10.1061/(ASCE)GT.1943-5606.0000407. [Google Scholar]
  7. D. Daniel & C. Benson (1990). Water content- density criteria for compacted soil liners. Journal of Geotechnical Engineering, Vol. 116, No. 12, pp 1811-1830. [Google Scholar]
  8. M.K. Gueddouda, M. Lamara, N. Aboubaker, S. Taibi (2008). Hydraulic conductivity and shear strength of dune sand–bentonite mixtures. Electron Journal Geotechnical Engineering 13:1–15. [Google Scholar]
  9. M. Montoro & F. Francisca (2010). Soil Permeability Controlled by Particle–Fluid Interaction. Geotech Geol. Eng., doi:10.1007/s10706-010-9348-y [Google Scholar]
  10. M. Piqué, D. Manzanal, M. Codevilla y S. Orlandi (2019). Polymer Enhanced Soils Mixture for Potential Use as Covers or Liners in Landfill Systems Environmental Geotechnics. Published Online: August 23, 2019, doi: 10.1680/jenge.18.00174. [Google Scholar]
  11. J. K. Mitchell & K. Soga (2005). Fundamentals of soil behaviour. Wiley, Hoboken, NJ. [Google Scholar]
  12. J. J. Bowders & D. E. Daniel (1987). Hydraulic conductivity of compacted clay to dilute organic chemicals. J. Geotech. Eng., doi: 10.1061/(ASCE)0733-9410(1987)113:12(1432), 1432–1448. [Google Scholar]
  13. J. C. Santamarina, K. A. Klein & M. A. Fam (2001). Soils and waves. Wiley, New York. [Google Scholar]
  14. F.W. Barvenik (1994). Polyacrylamide characteristics related to soil applications. Soil Science. 58:235-243. [Google Scholar]
  15. A. Mamedov, S. Beckmann, C. Huang, G. Levy (2007). Aggregate stability as affected by polyacrylamide molecular weight, soil exture, and water quality. Soil Science Society of America Journal 71(6) :1909–1918, [Google Scholar]
  16. Z. Zhou & D. Gao (1993). Polymer-Modified Clay as Impermeable Barriers for Acid Mining Tailings. MEND/NEDEM Report 6.2, Canada. clay-as-impermeable-barriers-for-acid-mining-tailings/. [Google Scholar]
  17. W.J. Orts, R.E. Sojka, G.M. Glenna, R.A. Gross (1999). Preventing soil erosion with polymer additives. Polymer News 24(1): 406–413. [Google Scholar]
  18. L-x Yang, S-c Li, H-I Sun et al. (2011). Polyacrylamide molecular formulation effects on erosion control of disturbed soil on steep rocky slopes. Canadian Journal of Soil Science 91(6): 917–924, https://doi. org/10.1139/CJSS10087. [Google Scholar]
  19. A.S. Michaels (1954). Aggregation of suspensions by polyelectrolytes. Industrial Engineering Chemistry 46: 1485-1490. [Google Scholar]
  20. B. K. Theng (1974). The Chemistry of Clay-Organic Reactions : Adm Hilger, London, 343 pp. [Google Scholar]
  21. B. K. Theng, (1979). Formation and Properties of Clay- Polymer Complexes. Elsevier, Amsterdam, pp 362. [Google Scholar]
  22. J.L. Mortensen, (1962). Adsorption of hydrolysed polyacrylonitrile on kaolinite : in Clays and Clay Minerals, Proc. 9th Natl. Conf. West Lafayette, Indiana, 1960, Ada Swineford, Ed. Pergamon Press, New York, 530-545. [Google Scholar]
  23. D.A. Laird (1997). Bonding between polyacrylamide and clay mineral surfaces. Soil Science 162:826-832. [Google Scholar]
  24. H.I. Inyang & S. Bae (2005). Polyacrylamide sorption opportunity on interlayer and external pore surfaces of contaminant barrier clays. Chemosphere 58(1), 19–31, doi: 10.1016/j.chemosphere.2004.08.090 [Google Scholar]
  25. Van ‘t Hoff (1884). Études de Dynamique Chimique. Frederik Muller, Amsterdam. [Google Scholar]
  26. S. Orlandi, D. Manzanal, A. Ruiz, M. Avila, M. Graf, (2015). A case study on expansive clays on Comodoro Rivadavia city. From Fundamentals to Applications in Geotechnics, D. Manzanal & A.O. Sfriso (Eds.) IOS Press, 2015. pp: 2276-2283. doi: 10.3233/978-1-61499-603-3-2276. [Google Scholar]
  27. J. C. Santamarina, K. Klein, Y. Wang, E. Prencke (2002). Specific surface: determination and relevance. Can. Geotech. J. 39: 233–241. Technical note. [Google Scholar]
  28. V. Mechtcherine, E. Secrieru & C. Schröfl (2015). Effect of super-absorbent polymers (SAPs) on rheological properties of fresh cement-based mortars — Development of yield stress and plastic viscosity over time. Cement and Concrete Research, vol. 67, p. 52. [Google Scholar]
  29. L. Marti, M. Codevilla, T. Piqué, D. Manzanal (2015). Natural soil modified with polymer for use in landfill systems. From Fundamentals to Applications in Geotechnics. D. Manzanal & A.O. Sfriso (Eds.) IOS Press, 2015. pp: 2228-2235. doi: 10.3233/978-1-61499-603-3-2228. [Google Scholar]
  30. K. Bicalho, A. Correia, S. Ferreira, J. M. Fleureau, F. a. M. Marinho (2007). Filter paper method of soil suction measurement. Advances in Unsaturated Soils, 225–230. [Google Scholar]
  31. J. Scalia, C. Benson, G. Bohnhoff, T. Edil, C. Shackelford (2014). Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions. J. Geotech. Geoenviron. Eng., doi: 10.1061/(ASCE)GT.1943-5606.0001040, 04013025. [Google Scholar]
  32. S. Orlandi, D. Manzanal, E. Miranda, M. Robison, (2019) Using lignin as stabiliser of swelling soils. XVI Pan-American Conference on Soil Mechanics and Geotechnical Engineering 17-20 November 2019. Cancun, México. doi: 10.3233/STAL190295. [Google Scholar]
  33. S. Orlandi, M.E. Taverna, Y. Villada, T. Piqué, C. Laskowski, V. Nicolau, D. Estenoz, D. Manzanal (2020). Additives based on vegetable biomass to improve the stabilization of expansive clay Soil. Environmental Geotechnics. Accepted. [Google Scholar]
  34. M. Fernandez, S. Orlandi, M. Codevilla, T. Piqué, D. Manzanal (2020) Permormance of Calcium Lignosulfonate as stabilizer of highly expansive clay. Transportation Geotechnics, 27 (2021) 100469. [Google Scholar]
  35. D. Manzanal, S. Orlandi, J.C. Barria (2019). Swell characterisation of expansive clays from Comodoro Rivadavia - Argentine. XVI Pan-American Conference on Soil Mechanics and Geotechnical Engineering. 17-20 November 2019. Cancun, Mexico. doi:10.3233/STAL190107. [Google Scholar]
  36. L. Luckner, M. T. Van Genuchten, D. R. Nielsen ( 1989), A consistent set of parametric models for the two‐phase flow of immiscible fluids in the subsurface, Water Resour. Res., 25(10), 2187–2193, doi:10.1029/WR025i010p02187. [Google Scholar]
  37. D.G. Fredlund & A. Xing (1994). Equations for the Soil-Water Characteristic Curve. Canadian Geotechnical Journal, 31, 521–532. [CrossRef] [Google Scholar]
  38. D. Manzanal, M. Pastor, M. Fernandez, M. Merodo (2011). Generalized plasticity state parameter-based model for saturated and unsaturated soils Part II: unsaturated soil modeling. Int. J. Numer. Anal. Met. 35 (18), 1899–1917. doi: 10.1002/nag.983 [Google Scholar]
  39. D. Manzanal, M. Pastor, M. Fernandez, M. Merodo, P. Mira (2010). A state parameter based Generalized Plasticity model for unsaturated soils. Computer Modelling in Engineering and Science CMES, 55, no.3, pp.293-317, 2010. doi: 10.3970/cmes.2010.055.293 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.