Open Access
Issue |
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 7 | |
Section | Constitutive and Numerical Modeling | |
DOI | https://doi.org/10.1051/matecconf/202133702009 | |
Published online | 26 April 2021 |
- E.E. Alonso, A. Gens, A. Josa. (1990). A constitutive model for partially saturated soils. Geotechnique 40:3, 405-30, doi: 10.1680/geot.1990.40.3.405 [Google Scholar]
- A. Gens. (2010). Soil-environment interactions in geotechnical engineering. Geotechnique 60:1, 3-74, doi: 10.1680/geot.9.P.109 [Google Scholar]
- S. J. Wheeler & V. Sivakumar. (1995). An elasto-plastic critical state framework for unsaturated soil. Geotechnique 45:1, 35–53, doi: 10.1680/geot.1995.45.1.35 [Google Scholar]
- Y.J. Cui & P. Delage. (1996). Yielding and plastic behavior of an unsaturated compacted silt. Geotechnique 46:2, 291-311, doi: 10.1680/geot.1996.46.2.291 [Google Scholar]
- M. Sanchez, A. Gens, L. do N. Guimarães, S. Olivella. (2005). A double structure generalized plasticity model for expansive materials. Int. J. Numer. Anal. Methods Geomech. 29:8, 751–787, doi: 10.1002/nag.434 [Google Scholar]
- A. Tarantino. (2009). A water retention model for deformable soils. Geotechnique 59:9, 751-762, doi: 10.1680/geot.7.00118 [CrossRef] [Google Scholar]
- D. Gallipoli, A.W. Bruno, F. D’Onza, C. Mancuso. (2015). A bounding surface hysteretic water retention model for deformable soils. Geotechnique 65:10, 793–804, doi: 10.1680/jgeot.14.P.118 [Google Scholar]
- Y. Lins, Y. Zou, T. Schanz. (2007). Physical modelling of SWCC for granular materials. Theoretical and numerical unsaturated soil mechanics, Weimar, Germany, p.61-74. doi: 10.1007/3-540-69876-0_7 [Google Scholar]
- G.A. Miller, C.N. Khoury, K.K. Muraleetharan, C. Liu, T.C.G. Kibbey. (2008). Effects of soil skeleton deformations on hysteretic soil water characteristic curves: Experiments and simulations. Water Res. Res. 44:5, doi: 10.1029/2007WR00649 [CrossRef] [Google Scholar]
- N. Lu & M. Khorshidi. (2015). Mechanisms for Soil-Water Retention and Hysteresis at High Suction Range. J. of Geotech. and Geoenviron. Eng. 141:8, doi: 10.1061/(ASCE)GT.1943-5606.0001325 [Google Scholar]
- M.T. van Genuchten. (1980). A closed-form equation for pre-dicting the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Am. J. 44:5 892-898. [Google Scholar]
- M.B. Kenanoğlu & N.K. Toker. (2018). A formulation for scanning soil-water characteristic curves. Journal of Polytechnic 21:4, 901-906. doi: 10.2339/politeknik.389619 [Google Scholar]
- M.H. Mohamed & R.S. Sharma. (2007). Role of dynamic flow in relationships between suction head and degree of saturation. J. Geotech. Geoenviron. Eng., 133:3, 286-294, doi : 10.1061/(ASCE)1090-0241(2007)133:3(286) [Google Scholar]
- R.A. Naghadeh. (2015). Hydro-mechanical behavior of unsaturated isotropically reconstituted specimens from slurry and compacted specimens. Doctoral dissertation, Middle East Technical University. [Google Scholar]
- T. M. Thu, H. Rahardjo, E. C. Leong. (2007). Soil-water characteristic curve and consolidation behavior for a compacted silt. Canadian Geotech. J., 44:3, 266-275. doi: 10.1139/t06-114 [Google Scholar]
- A. Raveendiraraj. (2009). Coupling of mechanical behavior and water retention behavior in unsaturated soils. Doctoral dissertation, University of Glasgow. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.