Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 02010
Number of page(s) 8
Section Constitutive and Numerical Modeling
DOI https://doi.org/10.1051/matecconf/202133702010
Published online 26 April 2021
  1. L. M. Arya & J. F. Paris. (1981). A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45, 1023-1030, doi: 10.2136/sssaj1981.03615995004500060004x [CrossRef] [Google Scholar]
  2. R. Haverkamp & J. Y. Parlange. (1986). Predicting the water-retention curve from particle-size distribution: sands soils without organic matter. Soil Sci. 142(6), 325-339 [CrossRef] [Google Scholar]
  3. D. G. Fredlund & A. Xing. (1994). Equations for the soil-water characteristic curve. Can. Geo. J. 31(3), 521–532. doi: 10.1139/t94-061 [Google Scholar]
  4. M. D. Fredlund, G. W. Wilson & D. G. Fredlund. (2002). Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geo. J. 39, 1103-1117, doi: 10.1139/T02-049 [CrossRef] [Google Scholar]
  5. M. Aubertin, M. Mbonimpa, B. Bussière & R. P. Chapuis. (2003). A model to predict the water retention curve from basic geotechnical properties. Can. Geo. J. 40, 1104–1122, doi: 10.1139/t03-054 [Google Scholar]
  6. M. Tuller & D. Or. (2005). Water films and scaling of soil characteristic curves at low water contents. Water Res. Res. 41, 6, doi: 10.1029/2005WR004142 [Google Scholar]
  7. R. Jaafar & W. J. Likos. (2011). Estimating water retention characteristics of sands from grain size distribution using idealized packing conditions. Geo. Test. J. 34(5), 1-14, doi: 10.1520/GTJ103594 [Google Scholar]
  8. J. Wang, N. Hu, B. Fraçois & P. Lambert. (2017). Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters. Water Res. Res. 53(7), 6069-6088, doi: 10.1002/2017WR020411 [CrossRef] [Google Scholar]
  9. R. D. Alves, G. F. N. Gitirana Jr. & S. K. Vanapalli. (2020). Advances in the modeling of the soil–water characteristic curve using pore-scale analysis. Comp. Geo. 127, 12, doi: 10.1016/j.compgeo.2020.103766 [Google Scholar]
  10. D. G. Fredlund, H. Rahardjo & M. D. Fredlund. (2012). Unsaturated soil mechanics in engineering practice (John Wiley, New Jersey). [CrossRef] [Google Scholar]
  11. N. Lu & W. J. Likos. (2004). Unsaturated soil mechanics (John Wiley, New Jersey). [Google Scholar]
  12. N. B. Vargaftik, B. N. Volkov & L. D. Voljak. (1983). Inter006Eational tables of the surface tension of water. J. Phys. Chem. Ref. Data. 12(3), 817-820, doi: 10.1063/1.555688 [CrossRef] [Google Scholar]
  13. A. Karangunduz, K. D. Pennell & M. H. Young. (2001). Influence of a nonionic surfactant on the water retention properties of unsaturated soils. Soil Sci. Soc. Am. J. 65, 1392-1399, doi: 10.2136/sssaj2001.6551392x [CrossRef] [Google Scholar]
  14. N. Sghaier, M. Prat & S. B. Nasrallah. (2006). On the influence of sodium chloride concentration on equilibrium contact angle. Chem. Eng. J. 122, 47-53, doi: 10.1016/j.cej.2006.02.017 [CrossRef] [Google Scholar]
  15. S. C. Gupta & W. E. Larson. (1979). Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Res. Res. 15(6), 1633-1635, doi: 10.1029/WR015i006p01633 [CrossRef] [Google Scholar]
  16. R. Jong, C. A. Campbell & W. Nicholaichuk. (1983). Water retention equations and their relationship to soil organic matter and particle size distribution for disturbed samples. Can. J. Soil Sci. 63, 291-302, doi: 10.4141/cjss83-029 [CrossRef] [Google Scholar]
  17. Z. Liu, X. Yu & L. Wan. (2014). Capillary rise method for the measurement of the contact angle of soils. Acta Geotech. 11, 21-35, doi: 10.1007/s11440-014-0352-x [CrossRef] [Google Scholar]
  18. C. E. Zapata, W. N. Houston, S. L. Houston, K. D. Walsh. (2000). Soil-water characteristic curve variability. Geo-Denver, Denver, 84-124, doi: 10.1061/40510(287)7 [Google Scholar]
  19. W. J. Likos, N. Lu & J. W. Godt. (2013). Hysteresis and uncertainty in soil water-retention curve parameters. J. Geotech. Geoenv. Eng. 140(14), 12p, doi: 10.1061/(ASCE)GT.1943-5606.0001071 [Google Scholar]
  20. K. K. Phoon, A. Santoso & S. T. Quek. (2010). Probabilistic analysis of soil-water characteristic curve. J. Geotech. Geoenv. Eng. 136(3), 445-455, doi: 10.1061/(ASCE)GT.1943-5606.0000222 [CrossRef] [Google Scholar]
  21. A. Nemes, M. Schaap, F. J. Leij & J. H. M. Wösten. (1993). UNSODA 2.0: Unsaturated Soil Hydraulic Database, US Salinity Laboratory - ARS – USDA, doi: 10.15482/USDA.ADC/1173246 [Google Scholar]
  22. G. F. N. Gitirana Jr. & D. G. Fredlund. (2016). Statistical assessment of hydraulic properties of unsaturated soils. Soils and Rocks 39(1), 81-95, doi: 10.28927/SR.39181 [Google Scholar]
  23. S. Mishra, J. C. Parker & N. Singhal. (1989). Estimation of soil hydraulic properties and their uncertainty from particle size distribution data. J. Hydrology. 108, 1-18, doi: 10.1016/0022-1694(89)90275-8 [CrossRef] [Google Scholar]
  24. Q. Zhai & H. Rahardjo. (2013). Quantification of uncertainties in soil–water characteristic curve associated with fitting parameters. Eng. Geol. 163, 144-152, doi: 10.1016/j.enggeo.2013.05.014 [CrossRef] [Google Scholar]
  25. Q. Zhai, H. Rahardjo & A. Satyanaga (2016). Variability in unsaturated hydraulic properties of residual soil in Singapore. Eng. Geol. 209, 21-29, doi: 10.1016/j.enggeo.2016.04.034 [CrossRef] [Google Scholar]
  26. J. S. Dubé, J. Ternisien, J. P. Boudreault, F. Duhaime & Y. Éthier. (2020). Variability in particle size distribution due to sampling. Geo. Test. J. 27, doi: 10.1520/GTJ20190030 [Google Scholar]
  27. R. Narizzano, F. Risso, R. Innocenti, V. Mollica & B. Tortarolo. (2008). Soil subsampling in environmental sciences: the role of granulometry. J. Environ. Monit. 10, 993-997, doi: 10.1039/b806522p [CrossRef] [Google Scholar]
  28. L. Beuselinck, G. Govers, J. Poesen, G. Degraer & L. Froyen. (1998). Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method. Catena, 32, 193-208, doi: 10.1016/S0341-8162(98)00051-4 [CrossRef] [Google Scholar]
  29. Y. Yang, L. Wang, O. Wendroth, B. Liu, C. Cheng, T. Huang & Y. Shi. (2019). Is the laser diffraction method reliable for soil particle size distribution analysis? Soil. Sci. Soc. Am. J. 12, doi: 10.2136/sssaj2018.07.0252 [Google Scholar]
  30. J. M. R. Fernlund, R. W. Zimmerman & D. Kragic. (2007). Influence of volume/mass on grain-size curves and conversion of image-analysis size to sieve size. Eng. Geol. 90, 124-137, doi: 10.1016/j.enggeo.2006.12.007 [CrossRef] [Google Scholar]
  31. Y. Wang, C. L. Lin & J. D. Miller. (2016). 3D image segmentation for analysis of multisize particles in a packed particle bed. Power Tech. 301, 160-168, doi: 10.1016/j.powtec.2016.05.012 [CrossRef] [Google Scholar]
  32. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Meth. 9(7), 676-682, doi:10.1038/nmeth.2019 [CrossRef] [PubMed] [Google Scholar]
  33. E. Buckingham. (1914). On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. IV(4), 345-376, doi: 0.1103/PhysRev.4.345 [CrossRef] [Google Scholar]
  34. M. T. van Genuchten. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. J. Soil Sci. Soc. Am. 44, 892-898. doi: 10.2136/sssaj1980.03615995004400050002x [Google Scholar]
  35. K. S. Lane, & S. E. Washburn. (1946). Capillary tests by capillarimeters and by soil filled tubes. Proceedings of Highway Research Board, 26, 460-473. [Google Scholar]
  36. R. B. Peck, W. E. Hansen & T. H. Thornburn. (1974). Foundation Engineering (Wiley, New York). [Google Scholar]
  37. G. H. Torres. (2011). Estimating the soil-water characteristic curve using grain-size analysis and plasticity index. M.Sc. Thesis (Arizona State University, Tempe, AZ) [Google Scholar]
  38. G. F. N. Gitirana Jr. (2005). Weather-related geo-hazard assessment model for railway embankment stability. PhD Thesis (University of Saskatchewan, Canada), 411p. [Google Scholar]
  39. V. H. Franco, G. F. N. Gitirana Jr. & A. P. de Assis. (2019). Probabilistic assessment of tunneling-induced building damage. Comp. Geotech. 113, 15p, doi: 10.1016/j.compgeo.2019.103097 [CrossRef] [Google Scholar]
  40. M. D. Fredlund, D. G. Fredlund & G. W. Wilson. (2000). An equation to represent grain-size distribution. Can. Geo. J. 37(4), 817-827, doi: 10.1139/t00-015 [CrossRef] [Google Scholar]
  41. H. Q. Pham, D. G. Fredlund & S. L. Barbour. (2005). A study of hysteresis models for soil-water characteristic curve. Can. Geotech. J. 42(6), 1548-1568, doi: 10.1139/t05-071 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.