Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 02008
Number of page(s) 7
Section Constitutive and Numerical Modeling
DOI https://doi.org/10.1051/matecconf/202133702008
Published online 26 April 2021
  1. A. Ahmed, M. S. Hossain, M. S. Khan, & A. Shishani. (2018). Data Based Real Time Moisture Modeling in Unsaturated Expansive Subgrade. In PanAm Unsaturated Soils 2017, 158-167. [Google Scholar]
  2. M. Elshaer, M. Ghayoomi, & J. D. Daniel. (2018). Methodology to evaluate performance of pavement structure using soil moisture profile. Road Materials and Pavement Design, 19:4, 952-971. [Google Scholar]
  3. A. Ahmed, & M. A. Islam. (2020). Effect of Using Geosynthetics in Mitigation of Freeze-Thaw through Numerical Analysis. In Geo-Congress 2020: Geotechnical Earthquake Engineering and Special Topics, Reston, VA: American Society of Civil Engineers, 436-445. [Google Scholar]
  4. C. Kuo, and C. Huang. (2006). Three-dimensional pavement analysis with nonlinear subgrade materials. J. Mater. Civil Eng., 18:4, 537-544. [Google Scholar]
  5. M. Hedayati, M. S. Hossain, A. Mehdibeigi, & B. Thian. (2014). Real-time modeling of moisture distribution in subgrade soils. In Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, 3015-3024. [Google Scholar]
  6. C. E. Zapata, W.N. Houston, S.L. Houston, & K.D. Walsh. (2000). Soil-water characteristic curve variability. ASCE Geotechnical Special Publication 99, Denver, CO, 84-124. [Google Scholar]
  7. Rivera-Hernandez, X. A., Ellithy, G. S., & Vahedifard, F. (2019). Integrating Field Monitoring and Numerical Modeling to Evaluate Performance of a Levee under Climatic and Tidal Variations. Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 05019009. [Google Scholar]
  8. M. D. Hashem, & A. M. Abu-Baker. (2013). Numerical modeling of flexible pavement constructed on expansive soils. Eur. Int. J. Sci. Tech., 2:10, 19-34. [Google Scholar]
  9. A. Djellali, O. Abdelhafid, & S. Behrooz. (2012). Behavior of flexible pavements on expansive soils. Int. J. of Transp. Eng., 1:1, 1-14. [Google Scholar]
  10. M. G. Schaap, F. J. Leij, & M. T. Van Genuchten. (2001). Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. of Hydrol., 251:3-4, 163-176. [Google Scholar]
  11. M. Tuller, & D. Or. (2004). Retention of water in soil and the soil water characteristic curve. Encyclopedia of Soils in the Environment, 4, 278-289. [Google Scholar]
  12. M. J. B. Alam, M. S. Hossain, A. Ahmed, & M. S. Khan. (2017). Comparison of Percolation of Flat and Slope Section Vegetated Lysimeters Using Field Soil Water Characteristic Curve. In PanAm Unsaturated Soils 2017, 28-37. [Google Scholar]
  13. Alam, M. J. B., and Hossain, M. S. (2019, March). Evaluation of Post-Construction Changes in Soil Hydraulic Properties through Field Instrumentation and In Situ Testing. In Geo-Congress 2019: Geotechnical Materials, Modeling, and Testing (pp. 722-732). Reston, VA: American Society of Civil Engineers. [Google Scholar]
  14. M. T. Van Genuchten, (1980). Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898. [Google Scholar]
  15. R. H. Brooks, & A. T. Corey. (1964). Hydraulic properties of porous media. Am. Soc. Agric. Eng. Trans, 7, 26–28. [Google Scholar]
  16. W. Brutsaert. (1966). Probability laws for pore-size distributions. Soil Sci. 101, 85–92 [Google Scholar]
  17. D. G. Fredlund, & A. Xing. (1994). Equations for the soil–water characteristic curve. Can. Geotech. J. 31, 521–532 [Google Scholar]
  18. C. R. McKee, & A. C. Bumb. (1987). Flow-testing coalbed methane production wells in the presence of water and gas. Soc. Pet. Eng. (SPE) Form. Eval. 2:04, 599–608 [Google Scholar]
  19. E. C. Leong, & H. Rahardjo. (1997). Review of soil–water characteristic curve equations. J. Geotech. Geoenviron. Eng. 123, 1106–1117. [Google Scholar]
  20. K. E. Saxton, W.J. Rauls, J.S. Romberger, & R.I. Papendick (1986). Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J., 50:4, 1031-1036. [Google Scholar]
  21. M. Aubertin, M. Mbonimpa, B. Bussiere, & R.P. Chapuis. (2003). A Physically-based model to predict the water retention curve from basic geotechnical properties. Can. Geotech. J. 40:6, 1104-1122. [Google Scholar]
  22. Y. Y. Perera, C.E. Zapata, W.N. Houston, & S.L. Houston. (2005). Prediction of the soil-water characteristic curve based on grain-size-distribution and index properties. ASCE Geotechnical Special Publication, 130, Reston, VA, 49-60. [Google Scholar]
  23. A. B. Ghanbarian, A. Liaghat, G.H. Huang, & M. Th. Van Genuchten. (2010). Estimation of the Van Genuchen soil water retention properties from soil textural data. Soil Sci. Soc. China 20:4, 465. [Google Scholar]
  24. Ahmed, A., Alam, M. J. B., Pandey, P., and Hossain, M. S. (2021). “Determination of Unsaturated Flow Parameters and Hysteresis Curve from Field Instrumentation”. Full paper submitted in 3rd Pan-American Conferences on Unsaturated Soils. [Google Scholar]
  25. A. Ahmed. (2017). Effects of Climatic Loading in Flexible Pavement Subgrades in Texas, Doctoral dissertation, Department of Civil Engineering, The University of Texas at Arlington. [Google Scholar]
  26. M. J. B. Alam. (2017). Evaluation of Plant Root on the Performance of Evapotranspiration (ET) Cover System, Doctoral dissertation, Department of Civil Engineering, The University of Texas at Arlington. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.