Open Access
Issue
MATEC Web Conf.
Volume 334, 2021
The VI International Scientific and Practical Conference “Information Technologies and Management of Transport Systems” (ITMTS 2020)
Article Number 02016
Number of page(s) 10
Section Digital Technologies in Transport
DOI https://doi.org/10.1051/matecconf/202133402016
Published online 15 January 2021
  1. J.M. Austin, Reaction zones in highly unstable detonations. Proc.Combust.Inst. – vol. 30. – pp. 1849-1857. (2005) [Google Scholar]
  2. V.S. Babkin, A.A. Korzhavin, & V.A. Bunev, Propagation of premixed gaseous explosion flames in porous media./ Combust. Flame 87. рр. 182-190. (1991) [Google Scholar]
  3. A.I. Belyaev, A.S. Afanasyev, Efficiency of vehicle operation / International journal of economics and financial issues, No 2, pp. 24-30. (2016) [Google Scholar]
  4. G. Dixon-Lewis Some observations on the th combustion of methane in premixed flames. 11 (International) on Combustion, The Combustion Institute, Pittsburgh. –pр. 951-958. (1967) [Google Scholar]
  5. A.Yu. Izmailov, O.N. Didmanidze, G.Ye. Mityagin, A.M. Karev Resource saving in road transport. Moscow, (2016) [Google Scholar]
  6. W. Lee, Doo-Sung Baik, T. Rogers and P. Petersen, Study on Performance and Exhaust Gas Characteristics of Directly Injected CNG Engine. International Journal of Bio-Science and Bio-Technology Vol.6, No.2, p. 179-186. (2014) [Google Scholar]
  7. U. Frost, Heat transfer at low temperatures. Edited by N.A. Anfimov. Moscow: ed. Peace. p. 391. (1977) [Google Scholar]
  8. C.W. Hirt, B.D. Nicholls. Volume of Fluid (VOF) Method for Dynamicsof Free Boundaries // J. Comput. Phys. Vol. 39. p. 201. (1981) [Google Scholar]
  9. R.I. Nigmatulin, Fundamentals of mechanics of heterogeneous media. - Moscow: Nauka, (1978) [Google Scholar]
  10. S. Patankar, Numerical methods for solving problems of heat transfer and fluid dynamics. - Moscow: Energoatomizdat, (1984) [Google Scholar]
  11. R.N. Safiullin, A.S. Afanasyev, Integrated assessment of methods for calculating harm caused by vehicles in transport of heavy cargoes. IOP Conference Series: Earth and Environmental Science. 194(7), 072011, 2018, C.1-5 [Google Scholar]
  12. O.M. Belotserkovsky, Yu.M. Davydov. The method of large particles in gas dynamics. Moscow: Nauka, (1982). [Google Scholar]
  13. C. Prakash, S.V. Patankar, A control volume-based finite-element method for solving the Navie-Stokes equations using equal-order velocity-pressure interpolation // Numerical Heat Transfer. Vol. 8. p. 259. (1985) [Google Scholar]
  14. L. Kagan, Effects of hydraulic resistance and heat losses on deflagration-to-detonation transition. In Deflagrative and detonative combustion (eds G.D. Roy & S.M. Frolov). – рр. 157-168. (2010) [Google Scholar]
  15. R.Т. Khakimov, S.N. Shirokov, М.А. Yefremova, М.V. Kiselev, Innovation approach to ecological problems solution on north-east region. Bulletin of International agricultural education Academy, (24): 83-86. (2015) [Google Scholar]
  16. R.T. Khakimov, O.N. Didmanidze, A.S. Afanasyev, Research of heat generation indicators of gas engines. Electromechanics and Mechanical Engineering / Journal of Mining Institute. – Vol. 229. – p. 50-55. (2018) [Google Scholar]
  17. V. Yakhot, Renormalization group analysis of turbulence: 1. Basic theory. J. Scientific Computing. – Vol. 1. – No. 1. – P. 1. (1986) [Google Scholar]
  18. X.J. Gu, Laminar burning velocity and Markstein lengths of methane-airmixtures. Combust. Flame1. – Vol. 21. – pp. 41-58. (2000) [Google Scholar]
  19. G.E. Groff, The Cellular Nature of Confined Spherical Propane-Air Flames. Combustion and Flame. – Vo1. 48. – pp. 51-62 (1982) [Google Scholar]
  20. M. Metghalchi, Laminar burning velocity of propane-air mixtures at high temperature and pressure. Combustion and Flame. – vol. 38. – pp. 143-154. (1980) [Google Scholar]
  21. M.I. Hassan, Properties of laminar premixed CO/H2 air flames at various pressures. Journal of Propulsion. –. Power 13 (2). – рp. 239-245 (1997) [Google Scholar]
  22. J. Wu, Study Related to Downsize of Production Engine. PhD Thesis. University of Leeds. – рр. 341-348. (2003) [Google Scholar]
  23. C. Serrano, Laminar burning behaviour of biomass gasification-derived producer gas. International Journal of Hydrogen Energy. – vol. 33. – pp. 851-862. (2008) [Google Scholar]
  24. S.Y. Liao, Determination of laminar burning velocities for natural gas. Fuel. – vol. 83(9). – pp. 1247-1250. (2004) [Google Scholar]
  25. E.A. Mikaelian, Survey of the Gas-Turbine Gas-Compressor Units of Compressor Plants Based on the Modified Thermodynamics Model. International Journal of Alternative Fuels. – vol. 17. – pp. 1125-1131. (2015) [Google Scholar]
  26. S.K. Mahla, Effect of EGR on Performance and Emission Characteristics of Natural Gas Fueled Diesel Engine. Jordan Journal of Mechanical and Industrial Engineering. – – vol. 4. – pp. 523-530. (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.