Open Access
Issue
MATEC Web Conf.
Volume 329, 2020
International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2020)
Article Number 03050
Number of page(s) 8
Section Mechanical Engineering
DOI https://doi.org/10.1051/matecconf/202032903050
Published online 26 November 2020
  1. Weber J.H. Nickel and Nickel Alloys: An Overview / J.H. Weber, M.K. Banerjee // Reference Module in Materials Science and Materials Engineering. 2016. DOI:10.1016/B978-0-12-803581-8.02572-8 [Google Scholar]
  2. Miao Q. Comparison on grindability and surface integrity in creep feed grinding of GH4169, K403, DZ408 and DD6 nickel-based superalloys / Q. Miao W. Ding, W. Kuang, C. Yang, // Journal of Manufacturing Processes. 2019. Vol. 49. P. 175-186. DOI:10.1016/j.jmapro.2019.11.027. [Google Scholar]
  3. Liao Z. State-of-the-art of surface integrity in machining of metal matrix composites / Z. Liao, A. Abdelhafeez, H. Li, Y. Yang, O. Gavalda Diaz, D. Axinte // International Journal of Machine Tools and Manufacture. 2019. Vol. 143. P. 63-91. DOI:10.1016/j.ijmachtools.2019.05.006 [Google Scholar]
  4. Lv X. (2020). Deep Active Learning for Surface Defect Detection / X. Lv, F. Duan, J. Jiang, X. Fu, L. Gan, // Sensors. 2020. Vol. 20. 1650. DOI:10.3390/s20061650. [Google Scholar]
  5. Thiagarajan C. Experimental evaluation of grinding forces and surface finish in cylindrical grinding of Al/SiC metal matrix composites / C. Thiagarajan, R. Sivaramakrishnan, S. Somasundaram //. Proc. IMechE Part B: J. Engineering Manufacture. 2011. Vol. 225. P. 1606-1614. DOI:10.1177/0954405411398761 [Google Scholar]
  6. Xu X. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys / X. Xu, Y. Yu, H. Huang // Wear, 2003. Vol. 255, P. 1421-1426 [Google Scholar]
  7. Miao Q. Comparative investigation on wear behavior of brown alumina and microcrystalline alumina abrasive wheels during creep feed grinding of different nickel-based superalloys / Q. Miao, W. Ding, Y. Gu, J. Xu // Wear, 2019. Vol. 426–427. P. 1624–1634. DOI:10.1016/j.wear.2019.01.080 [Google Scholar]
  8. Sayutin G.I. Issledovanie mikrohimicheskih izmenenij poverhnosti titanovyh splavov pri shlifovanii [Investigation of microchemical changes in the surface of titanium alloys during grinding] / G.I. Sayutin, V.A. Nosenko // Treniye I iznos. 1983. –. Vol. 2 no.4. – pp. 348-352. (In Russian). [Google Scholar]
  9. Sayutin G.I. Perenos kremniya na poverhnost’ metalla pri shlifovanii krugami i mikrocarapanii indentorami iz karbida kremniya [Transfer of silicon to the metal surface during grinding circles and micro-scratching with silicon carbide indenters] / G.I. Sayutin, V.A. Nosenko, N.F. Larionov // Treniye I iznos. 1984. Vol 3. pp. 513-519. (In Russian). [Google Scholar]
  10. Nosenko V.A. Kriterij intensivnosti vzaimodejstviya obrabatyvaemogo i abrazivnogo materialov pri shlifovanii [Criterion for the intensity of interaction between the processed and abrasive materials during grinding]// Problemy Mashinostroeniya I Nadezhnosty mashin. 2001. Vol 5. pp. 85-91. (In Russian). [Google Scholar]
  11. Nosenko V.A. K voprosu ob intensivnosty contaktnogo vzaimodeystviya d-perehodnyh metllov s carbidom cremniya pri shlifovanii [On the intensity of contact interaction of d-transition metals with silicon carbide during grinding] // Problemy Mashinostroeniya I Nadezhnosty mashin. 2002. Vol 5. pp. 78-84. (In Russian). [Google Scholar]
  12. Wang R.X., Effects of abrasive material and hardness of grinding wheel on rail grinding behaviors / R.X. Wang, K. Zhou, J.Y. Yang, H.H. Ding, W.J. Wang, J. Guo, Q.Y. Liu // Wear. 2020. Vol. 454–455. 203332. DOI:10.1016/j.wear.2020.203332 [Google Scholar]
  13. Mello A.V., Surface Grinding of Ti-6Al-4V Alloy with SiC Abrasive Wheel at Various Cutting Conditions / A.V. de Mello, R.B. de Silva, Á. R. Machado, R.V. Gelamo, R.F.M. de Oliveira // Procedia Manufacturing. Vol. 10. 2017. P. 590-600. DOI:10.1016/j.promfg.2017.07.057 [Google Scholar]
  14. Nosenko, V.A., Fetisov, A.V., Puzyrkova, V.Y. (2018) Morphology and chemical composition of silicon carbide surfaces interacting with iron, cobalt, and nickel in microscratching. / V.A. Nosenko, A.V. Fetisov, V.Y. Puzyrkova, // Solid State Phenomena. Vol. 284. 2018. P. 363-368. DOI:10.4028/www.scientific.net/SSP.284.363 [Google Scholar]
  15. Nosenko, S.V., Nosenko, V.A., Kremenetskii, L.L. (2017) The Condition of Machined Surface of Titanium Alloy in Dry Grinding. Procedia Engineering. 206. PP. 115-120.. DOI:10.1016/j.proeng.2017.10.446. [Google Scholar]
  16. Nosenko V.A. Issledovanie himicheskogo sostava poverhnostnogo sloya titanovogo splava pri shlifovanii ego krugom iz karbida kremniya bez ispol’zovaniya sots [Investigation of the chemical composition of the surface layer of a titanium alloy when grinding it with a circle of silicon carbide without the use of coolant]/ Nosenko S.V., Nosenko V.A., Krutikova A.A., Kremenetskyi L.L.// STIN. – 2015. – № 1. – C. 26-29. [Google Scholar]
  17. Nosenko V.A. Sovershenstvovanie abrazivnogo instrumenta na bakelitovoj svyazke [Improvement of the abrasive tool on a bakelite bundle] // Problemy Mashinostroeniya I Nadezhnosty mashin. 2004. Vol 3. pp. 85-90. (In Russian). [Google Scholar]
  18. Nosenko S.V. INFLUENCE OF ABRASIVE TOOL DRESSING ON STATE OF RELIEF OF MACHINED SURFACE OF TITANIUM ALLOY AT COUNTER DEEP GRINDING / Nosenko S.V., Nosenko V.A., Kremenetskyi L.L. // Vestnik Mashinostroeniya. 2014. Vol 7. pp. 64-68. (In Russian). [Google Scholar]
  19. Nosenko S.V. The effect of the operating speed and wheel characteristics on the surface quality at creep-feed grinding titanium alloys / S.V. Nosenko, V.A. Nosenko, A.A. Koryazhkin, // Solid State Phenomena. 2018. Vol. 284. P. 369-374. DOI:10.4028/www.scientific.net/SSP.284.369 (In Russian). [Google Scholar]
  20. Soler Y.I. THE RESEARCH OF SPARKING-OUT EFFECT ON THE ROUGHNESS AT THE PLATE FLAT FOR THE FLAT CBN-GRINDING OF THE STEEL BRAND Р9М4К8 Soler Y.I., Prokopeva A.V. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2009, Vol. 1, no. 42, pp. 24–27. (In Russian). [Google Scholar]
  21. Starkov V.K. STRUCTURAL MODELING STRUCTURES OF GRINDING CIRCLES FROM CUBIC NITRIDE OF A PINE FOREST / Starkov V.K., Riabcev S.A., Petrosian L.S. // Vestnyk MGTU “Stankin”, 2009, Vol. 1 (5). pp. 87-97 (In Russian). [Google Scholar]
  22. Nosenko V.A., Fetisov A.V., Kuznetsov S.P. Morphology and chemical composition of the titanium alloy surface at the initial stage of grinding with a cubic boron nitride wheel. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 2, pp. 30–40. DOI:10.17212/1994-6309-2020-22.2-30-40. (In Russian). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.