Open Access
Issue |
MATEC Web Conf.
Volume 327, 2020
2020 4th International Conference on Measurement Instrumentation and Electronics (ICMIE 2020)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 5 | |
Section | Modern Sensors and Detection Technology | |
DOI | https://doi.org/10.1051/matecconf/202032701003 | |
Published online | 06 November 2020 |
- Lisa Mears, Stuart M. Stocks, Gürkan Sin, Krist V. Gernaey, A review of control strategies for manipulating the feed rate in fed-batch fermentation processes, J. Biotechnol, 245, 34 (2017) [CrossRef] [Google Scholar]
- Xuzhi Zhang, Xiaoyu Jiang, Zhihui Hao, Keming Qu, Advances in online methods for monitoring microbial growth, Biosens. Bioelectron, 126, 433(2019) [Google Scholar]
- Elif Burcu Bahadır, Mustafa Kemal Sezgintürk, Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses, Anal. Biochem, 478, 107 (2015) [Google Scholar]
- L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci, 102, 29 (1962) [CrossRef] [Google Scholar]
- Conan Mercer, Richard Bennett, Peter Ó. Conghaile, James F. Rusling, Dónal Leech, Glucose biosensor based on open-source wireless microfluidic potentiostat, Sens. Actuators B, 290, 616 (2019) [CrossRef] [Google Scholar]
- J. Wang, Electrochemical detection for microscale analytical systems: a review, Talanta, 56, 223 (2002) [CrossRef] [Google Scholar]
- F. Arduini, C. Zanardi, S. Cinti, F. Terzi, D. Moscone, G. Palleschi, R. Seebe, Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite, Sens. Actuators B, 212 , 536 (2015) [CrossRef] [Google Scholar]
- S. Calabrese Barton, J. Gallaway, P. Atanassov, Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev 104, 4867 (2004) [CrossRef] [Google Scholar]
- D. Leech, P. Kavanagh, W. Schuhmann, Enzymatic fuel cells: recent progress, Electrochim. Acta, 84, 223 (2012) [CrossRef] [Google Scholar]
- J. Wang, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 17, 7(2005) [Google Scholar]
- Ievgen Mazurenko, Vivek Pratap Hitaishi, Elisabeth Lojou, Recent advances in surface chemistry of electrodes to promote direct enzymatic bioelectrocatalysis, Current Opinion in Electrochemistry 19, 113 (2020) [CrossRef] [Google Scholar]
- Xiuling MAO, Jian WU, Yibin YING, Application of Electrochemical Biosensors in Fermentation, Chin. J. Anal. Chem. 36, 1749(2008) [Google Scholar]
- Turner, Robin FB, D. J. Harrison, and HENRY P. Baltes, A CMOS potentiostat for amperometric chemical sensors, IEEE J. Solid-State Circuits, 22.3, 473 (1987). [CrossRef] [Google Scholar]
- Lifang Liu, Lei Shi, Zhenyu Chu, Jingmeng Peng, Wanqin Jin, Prussian blue nanocubes modified graphite electrodes for the electrochemical detection of various analytes with high performance, Sens. Actuators B, 202, 820 (2014) [CrossRef] [Google Scholar]
- Danfeng Jiang, Zhenyu Chu, Jingmeng Peng, Wanqin Jin, Screen-printed biosensor chips with Prussian blue nanocubes for the detection of physiological analytes, Sens. Actuators B, 228, 679 (2016) [CrossRef] [Google Scholar]
- Linlin Li, Jingmeng Peng, Zhenyu Chu, Danfeng Jiang, Wanqin Jin, Single layer of graphene/Prussian blue nano-grid as the low-potential biosensors with high electrocatalysis, Electrochimica Acta, 217, 210 (2016) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.