Issue |
MATEC Web Conf.
Volume 327, 2020
2020 4th International Conference on Measurement Instrumentation and Electronics (ICMIE 2020)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 5 | |
Section | Modern Sensors and Detection Technology | |
DOI | https://doi.org/10.1051/matecconf/202032701003 | |
Published online | 06 November 2020 |
Glucose Analyzer Based on Self-made Biosensor for High-performance Glucose Detection
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
* Corresponding author: lj_bcm@163.com
The concentration analyzer with high precision and wide range is the core device for monitoring the fermentation process. In this work, we designed and proposed a lowcost three-electrode glucose analyzer based on a self-made screen-printed enzyme biosensor chip, which has a Prussian blue (PB) nanocubic structure and leads to high sensitivity of 117.31 μAmM-1cm-2. The hardware design of the glucose analyzer can be divided into five critical parts, including digital, signal treatment system, power supply, motor-driven and the host computer. The signal treatment system is used to collect, convert and amplify the weak current signal generated by the biosensor. The digital circuit of the central processing unit of the analyzer is designed using the STM32F407ZET6. Besides, an external analog-to-digital converter is used to achieve high precision A/D conversion. The stability of the potentiostat is ensured by designing the precision power supply, hardware filtering, and algorithm filtering. The experimental results show that the glucose analyzer has a wide linear detection range from 1g/L to 120g/L and the coefficient of variation at 1g/L is 0.038, which exhibits excellent performance in stability and detection accuracy. The analyzer can be applied in the future for in-situ measurement of glucose concentration for its wide-range and high-precision detection capabilities.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.