Open Access
Issue
MATEC Web Conf.
Volume 324, 2020
3rd International Conference “Refrigeration and Cryogenic Engineering, Air Conditioning and Life Support Systems” (CRYOGEN 2019)
Article Number 02004
Number of page(s) 11
Section Refrigeration Technology and Technics
DOI https://doi.org/10.1051/matecconf/202032402004
Published online 09 October 2020
  1. G.F. Hundy, (2016). Refrigeration, air conditioning and heat pumps. Butterworth-Heinemann. [Google Scholar]
  2. O.B. Tsvetkov & Y.A. Laptev (2017, November). Refrigerants and environment. In Journal of Physics Conference Series (Vol. 891, No. 1). [Google Scholar]
  3. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 Text with EEA relevance [Google Scholar]
  4. Mota-Babiloni, A., Navarro-Esbrí, J., Barragán-Cervera, Á., Molés, F., & Peris, B. (2015). Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems. International journal of refrigeration, 52, 21–31. [Google Scholar]
  5. G.A. Longo, C. Zilio, G. Righetti, & J. S. Brown, (2014). Experimental assessment of the low GWP refrigerant HFO-1234ze (Z) for high temperature heat pumps. Experimental Thermal and Fluid Science, 57, 293–300. [CrossRef] [Google Scholar]
  6. Y.Fang, S. Croquer, S. Poncet, Z. Aidoun & Y. Bartosiewicz, (2017). Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. international journal of refrigeration, 77, 87–98. [CrossRef] [Google Scholar]
  7. K. Nawaz, & M.R. Ally, (2019). Options for low–global-warming-potential and natural refrigerants Part 2: Performance of refrigerants and systemic irreversibilities. International Journal of Refrigeration. [Google Scholar]
  8. Y. Fang, S. Croquer, S. Poncet, Z. Aidoun, & Y. Bartosiewicz, (2017). Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. international journal of refrigeration, 77, 87–98. [CrossRef] [Google Scholar]
  9. A. Şencan, İ. İ. Köse, & R. Selbaş, (2011). Prediction of thermophysical properties of mixed refrigerants using artificial neural network. Energy conversion and management, 52(2),958–974. [Google Scholar]
  10. E. Gholamian, P. Hanafizadeh, & P. Ahmadi, (2018). Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Applied Thermal Engineering, 137, 689–699. [CrossRef] [Google Scholar]
  11. S.H. Mohammadi, (2018). Theoretical investigation on performance improvement of a low-temperature transcritical carbon dioxide compression refrigeration system by means of an absorption chiller after-cooler. Applied Thermal Engineering, 138, 264–279. [CrossRef] [Google Scholar]
  12. Y. Ma, Z. Liu, & H. Tian (2013). A review of transcritical carbon dioxide heat pump and refrigeration cycles. Energy, 55, 156–172. [CrossRef] [Google Scholar]
  13. G. P. Montagner & C. Melo, (2014). A study on carbon dioxide cycle architectures for light-commercial refrigeration systems. International journal of refrigeration, 42, 90–96. [CrossRef] [Google Scholar]
  14. L.H.P. Massuchetto, R. B. C. do Nascimento, S. M. R. de Carvalho, H. V.de Araújo, & d’Angelo, J. V. H. (2019). Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717 and R744/RE170. International Journal of Refrigeration, 106, 201–212. [CrossRef] [Google Scholar]
  15. I.H. Bell, P.A. Domanski, M.O. McLinden, & G.T. Linteris, (2019). The hunt for nonflammable refrigerant blends to replace R-134a. International Journal of Refrigeration. [Google Scholar]
  16. M.I. Sadik, S. Isakson, A. Malakizadi & L. Nyborg, (2016). Influence of coolant flow rate on tool life and wear development in cryogenic and wet milling of Ti-6Al-4V. Procedia CIRP, 46, 91–94. [CrossRef] [Google Scholar]
  17. F. Pušavec, D. Grguraš, M. Koch, & P. Krajnik, (2019). Cooling capability of liquid nitrogen and carbon dioxide in cryogenic milling. CIRP Annals. [Google Scholar]
  18. B.D. Jerold, & M.P. Kumar, (2012). Experimental comparison of carbon-dioxide and liquid nitrogen cryogenic coolants in turning of AISI 1045 steel. Cryogenics, 52(10),569–574. [Google Scholar]
  19. M.A. Prelas, N.E. White, D.A. Wisniewski, K.L.Walton, M.T. Tchouaso, Boraas, M.A., … & Watermann, M. L. (2018). Thermal to optical energy conversion: A multi megawatt carbon dioxide laser driven by an extremely high temperature gas cooled reactor. Progress in Nuclear Energy, 107, 155–171. [CrossRef] [Google Scholar]
  20. G. Garrett, & J. Watson, (2019). Comparison of water, helium, and carbon dioxide as coolants for next generation power plants using TRACE. Annals of Nuclear Energy, 126, 292–302. [Google Scholar]
  21. I.M. Kalnin & K.N. Fadekov (2006). Thermodynamic cycles of refrigeration machines and heat pumps. [Google Scholar]
  22. A.V. Bykov, E.M. Bezhanishvili, I.M. Kalnin (1992). Refrigeration Compressors/Ed. A.V. Bykov [Google Scholar]
  23. E.W. Lemmon, M. L. Huber, & M.O. McLinden (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010. [Google Scholar]
  24. O. Podtcherniaev, M. Boiarski, & A. Lunin, (2002). Comparative performance of two-stage cascade and mixed refrigerant systems in a temperature range from–100C to–70C [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.