Open Access
Issue
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 11002
Number of page(s) 9
Section Microstructure - Properties Relationships
DOI https://doi.org/10.1051/matecconf/202032111002
Published online 12 October 2020
  1. S.L Nyakana, J.C. Fanning, R.R. Boyer, Quick Reference guide for β titanium alloys in the 00s, Journal of Materials Engineering and Performance 14(6) (2005) 799-811. [CrossRef] [Google Scholar]
  2. D. Banerjee, J.C. Williams, Perspectives on Titanium Science and Technology, Acta Materialia 61(3) (2013) 844-879. [CrossRef] [Google Scholar]
  3. S. Shekhar, R. Sarkar, S.K. Kar, A. Bhattacharjee, Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti-5Al-5V-5Mo-3Cr, Materials & Design 66(Part B) (2015) 596-610. [CrossRef] [Google Scholar]
  4. J. Fan, J. Li, H. Kou, K. Hua, B. Tang, Y. Zhang, Microstructure and mechanical property correlation and property optimization of a near β titanium alloy Ti-7333, Journal of Alloys & Compounds 682 (2016) 517-524. [CrossRef] [Google Scholar]
  5. Z. Du, S. Xiao, L Xu, J. Tian, F. Kong, Y. Chen, Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy, Materials & Design 55(55) (2014) 183-190. [Google Scholar]
  6. J.O. Peters, G. Lütjering, M. Koren, H. Puschnik, R.R. Boyer, Processing, microstructure, and properties of β-CEZ, Materials Science and Engineering: A 213(1) (1996) 71-80. [CrossRef] [Google Scholar]
  7. J. Fan, J. Li, H. Kou, K. Hua, B. Tang, Y. Zhang, Microstructure and mechanical property correlation and property optimization of a near β titanium alloy Ti-7333, Journal of Alloys and Compounds 682 (2016) 517-524. [Google Scholar]
  8. Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002) 912. [Google Scholar]
  9. W Zhu, J. Lei, C. Tan, Q. Sun, W Chen, L Xiao, J. Sun, A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility, Materials & Design 168 (2019) 107640. [Google Scholar]
  10. G.T. Terlinde, T.W. Duerig, J.C. Williams, Microstructure, tensile deformation, and fracture in aged ti 10V-2Fe-3Al, Metallurgical Transactions A 14(10) (1983) 2101-2115. [Google Scholar]
  11. CM. Liu, H.M. Wang, X.J. Tian, H.B. Tang, D. Liu, Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy, Materials Science and Engineering: A 586 (2013) 323-329. [Google Scholar]
  12. O.M. Ivasishin, P.E. Markovsky, YV. Matviychuk, S.L. Semiatin, C.H. Ward, S. Fox, A comparative study of the mechanical properties of high-strength β-titanium alloys, Journal of Alloys and Compounds 457(1-2) (2008) 296-309. [Google Scholar]
  13. O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, C.H. Ward, Aging response of coarse- and fine-grained β titanium alloys, Materials Science and Engineering: A 405(1-2) (2005) 296-305. [Google Scholar]
  14. C-L Li, X.-J. Mi, W-J. Ye, S.-X. Hui, Y Yu, W-Q. Wang, A study on the microstructures and tensile properties of new beta high strength titanium alloy, Journal of Alloys and Compounds 550 (2013) 23-30. [Google Scholar]
  15. L. Ren, W Xiao, H. Chang, Y. Zhao, C. Ma, L Zhou, Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment, Materials Science and Engineering: A 711 (2018) 553-561. [CrossRef] [Google Scholar]
  16. M. Abdel-Hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Materialia 55(5) (2006) 477-480. [Google Scholar]
  17. M. Abdel-Hady, K. Hinoshita, H. Fuwa, Y Murata, M. Morinaga, Change in anisotropy of mechanical properties with β-phase stability in high Zr-containing Ti-based alloys, Materials Science & Engineering A 480(1-2) (2008) 167-174. [Google Scholar]
  18. Y Abd-elrhman, M.A.H. Gepreel, A. Abdel-Moniem, S. Kobayashi, Compatibility assessment of new V-free low-cost Ti-4.7Mo-4.5Fe alloy for some biomedical applications, Materials & Design 97 (2016) 445-453. [Google Scholar]
  19. L Ren, W. Xiao, C. Ma, R. Zheng, L Zhou, Development of a high strength and high ductility near β-Ti alloy with twinning induced plasticity effect, Scripta Materialia 156 (2018) 47-50. [CrossRef] [Google Scholar]
  20. C. Brozek, F. Sun, P. Vermaut, Y. Millet, A. Lenain, D. Embury, P.J. Jacques, F. Prima, A β-titanium alloy with extra high strain-hardening rate: Design and mechanical properties, Scripta Materialia 114 (2016) 60-64. [Google Scholar]
  21. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L Semiatin, Precipitation and recrystallization behavior of beta titanium alloys during continuous heat treatment, Metallurgical and Materials Transactions A 34(1) (2003) 147-158. [CrossRef] [Google Scholar]
  22. W. Gerhard, R.R. Boyer, E.W. Collings, Materials properties handbook: Titanium alloys, (1994). [Google Scholar]
  23. J.C. Fanning, Properties of TIMETAL 555 (Ti-5Al-5Mo-5V-3Cr-0.6Fe), Journal of Materials Engineering and Performance 14(6) (2005) 788-791. [CrossRef] [Google Scholar]
  24. D. Lunt, X. Xu, T. Busolo, J. Quinta da Fonseca, M. Preuss, Quantification of strain localisation in a bimodal two-phase titanium alloy, Scripta Materialia 145 (2018) 45-49. [Google Scholar]
  25. H.H. Fu, D.J. Benson, M.A. Meyers, Analytical and computational description of effect of grain size on yield stress of metals, Acta Materialia 49(13) (2001) 2567-2582. [CrossRef] [Google Scholar]
  26. X.L. Wu, M.X. Yang, F.P. Yuan, L Chen, YT Zhu, Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility, Acta Materialia 112 (2016) 337-346. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.