Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 11032 | |
Number of page(s) | 6 | |
Section | Microstructure - Properties Relationships | |
DOI | https://doi.org/10.1051/matecconf/202032111032 | |
Published online | 12 October 2020 |
Effects of Heat Treatment on Mechanical Properties and Microstructure Evolutions of Ti-5321 Alloy
a State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China
b College of Materials Science and Engineering and Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, China
c Northwest Institute for Non-ferrous Metal Research, Xi’an, China
* jingzhe.niu@stu.xjtu.edu.cn / njzhe91@gmail.com, *guoyanhua@njtech.edu.cn
This work presents a comprehensive study on the microstructure evolution and mechanical property under different heat treatment procedures of a new near β type titanium Ti-5321(Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe). Two solution temperatures(830°C and 900°C) and a group of aging temperatures(300-650°C) were carried out to investigate the influence of heat treatment on this new alloy. The strengthening mechanism of Ti-5321 after solution and aging treatment was discussed by analyzing the microstructure and its mechanical properties. The best ultimate tensile strength can be achieved to 1564 MPa with 5% on elongation when solution treated at 830°C and aging at 450°C for this new alloy. The lamellar and globular α grains can be found in all 830°C solution treated specimens which contribute to a better ductility. Ultra-fine α phase can be found in all low aging temperature treated specimens but will coarsen significantly when raising the aging temperature and thus increase the tensile strength and lower the ductility. All these results can provide a comprehensive guidance on heat treatment for this new near β type titanium in the future.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.