Open Access
Issue
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 03017
Number of page(s) 11
Section Additive and Near Net Shape Manufacturing
DOI https://doi.org/10.1051/matecconf/202032103017
Published online 12 October 2020
  1. P. Muller, P. Mognol, and J.-Y. Hascoët, ‘Modeling and control of a direct laser powder deposition process for Functionally Graded Materials (FGM) parts manufacturing’, journal of materials processing technology, vol. 213, no. 5, pp. 685-692, 2013. [CrossRef] [Google Scholar]
  2. D. Bourell et al., ‘Materials for additive manufacturing’, CIRP Annals, vol. 66, no. 2, pp. 659-681, Jan. 2017. [CrossRef] [Google Scholar]
  3. A. Saboori, D. Gallo, S. Biamino, P. Fino, and M. Lombardi, ‘An Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties’, Applied Sciences, vol. 7, no. 9, p. 883, Sep. 2017. [CrossRef] [Google Scholar]
  4. T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, and H.M. Wang, ‘Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing’, Journal of Alloys and Compounds, vol. 632, pp. 505-513, May 2015. [Google Scholar]
  5. J. Wang, L. Li, C. Tan, H. Liu, and P. Lin, ‘Microstructure and tensile properties of TiCp/Ti6Al4V titanium matrix composites manufactured by laser melting deposition’, Journal of Materials Processing Technology, vol. 252, pp. 524-536, Feb. 2018. [CrossRef] [Google Scholar]
  6. J. Yu, M. Rombouts, G. Maes, and F. Motmans, ‘Material Properties of Ti6Al4V Parts Produced by Laser Metal Deposition’, Physics Procedia, vol. 39, pp. 416-424, Jan. 2012. [CrossRef] [Google Scholar]
  7. Y. Zhai, H. Galarraga, and D.A. Lados, ‘Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM’, Engineering Failure Analysis, vol. 69, pp. 3-14, Nov. 2016. [CrossRef] [Google Scholar]
  8. Z. Zhao, J. Chen, H. Tan, X. Lin, and W. Huang, ‘Evolution of plastic deformation and its effect on mechanical properties of laser additive repaired Ti64ELI titanium alloy’, Optics & Laser Technology, vol. 92, pp. 36-43, Jul. 2017. [CrossRef] [Google Scholar]
  9. A.J. Pinkerton, W. Wang, and L. Li, ‘Component repair using laser direct metal deposition’, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 222, no. 7, pp. 827-836, Jul. 2008. [CrossRef] [Google Scholar]
  10. B. Graf, A. Gumenyuk, and M. Rethmeier, ‘Laser Metal Deposition as Repair Technology for Stainless Steel and Titanium Alloys’, Physics Procedia, vol. 39, pp. 376-381, Jan. 2012. [CrossRef] [Google Scholar]
  11. C. Piya, J.M. Wilson, S. Murugappan, Y. Shin, and K. Ramani, ‘Virtual Repair: Geometric Reconstruction for Remanufacturing Gas Turbine Blades’, in Volume 9: 23rd International Conference on Design Theory and Methodology; 16th Design for Manufacturing and the Life Cycle Conference, Washington, DC, USA, 2011, pp. 895-904. [CrossRef] [Google Scholar]
  12. J. Um, M. Rauch, J.-Y. Hascoët, and I. Stroud, ‘STEP-NC compliant process planning of additive manufacturing: remanufacturing’, Int J Adv Manuf Technol, pp. 1-16, May 2016. [Google Scholar]
  13. J.-Y. Hascoët, S. Touzé, and M. Rauch, ‘Automated identification of defect geometry for metallic part repair by an additive manufacturing process’, Weld World, vol. 62, no. 2, pp. 229-241, Mar. 2018. [CrossRef] [Google Scholar]
  14. D. Mery, ‘Automated Radioscopic Inspection of Aluminium Die Castings’, Materials Evaluation, vol. 65, no. 6, pp. 643-647, 2006. [Google Scholar]
  15. I. Tabernero, A. Calleja, A. Lamikiz, and L.N. López De Lacalle, ‘Optimal parameters for 5-axis Laser cladding’, Procedia Engineering, vol. 63, pp. 45-52, 2013. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.