Open Access
Issue
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 03018
Number of page(s) 12
Section Additive and Near Net Shape Manufacturing
DOI https://doi.org/10.1051/matecconf/202032103018
Published online 12 October 2020
  1. C.K. Chua, K.F. Leong, 3D printing and additive manufacturing: principles and applications, 5th ed., World Scientific Publishing Company, (2017). [Google Scholar]
  2. I. Inagaki, T. Takechi, Y. Shirai, N. Ariyasu, Application and features of titanium for the aerospace industry, Nippon Steel & Sumitomo Metal Technical Report 2014, pp. 22-27. [Google Scholar]
  3. R. Huang, M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J. Cresko, E. Masanet, Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components, J. Clean. Prod. 135 (2016) 1559-1570. [CrossRef] [Google Scholar]
  4. C.K. Chua, K.F. Leong, 3D printing and additive manufacturing: principles and ap plications, 5th ed., World Scientific Publishing Company, (2017). [Google Scholar]
  5. S. Pouzet, P. Peyre, C. Gorny, O. Castelnau, T. Baudin, F. Brisset, C. Colin, P. Gadaud, Additive layer manufacturing of titanium matrix composites using the direct metal deposition laser process, Mater. Sci. Eng. A. 677 (2016) 171-181. [CrossRef] [Google Scholar]
  6. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, K. Zhuravleva, A. Funk, S. Scudino, C. Yang, J. Eckert, Comparative study of microstructures and mechanical properties of in situ Ti—TiB composites produced by selective laser melting, powder metallurgy, and casting technologies, J. Mater. Res. 29 (2014) 1941-1950. [CrossRef] [Google Scholar]
  7. P. Krakhmalev, I. Yadroitsev, Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti—SiC powder mixtures, Intermetallics. 46 (2014) 147-155. [Google Scholar]
  8. H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review, International Journal of Machine Tools and Manufacture. 133 (2018) 85-102. [Google Scholar]
  9. S. Pouzet, Fabrication additive de composites à matrice titane par fusion laser de poudre projetée, PhD Thesis, Paris, ENSAM, 2015. [Google Scholar]
  10. T.K. Gupta, F.F. Lange, J.H. Bechtold, Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase, Journal of Materials Science. 13 (1978) 1464-1470. [CrossRef] [Google Scholar]
  11. X.B. Zhou, J.T.M. De Hosson, Reactive weting of liquid metals on ceramic substrates, Acta Mater. 44 (1996) 421-426. [Google Scholar]
  12. B. Zhang, B. Ma, X. Zhang, Q. Zhu, X. Ren, Y. Zhang, X. Qu, J. Yu, J. Yu, Effects of YSZ and nano-ZrO 2 contents on the properties of Ti2448-ZrO 2 biomedical composites fabricated by SPS, Ceramics International. 44 (2018) 13293-13302. [Google Scholar]
  13. X.-Y. Zhang, G. Fang, S. Leeflang, A.J. Böttger, A.A. Zadpoor, J. Zhou, Effect of subtransus heat treatment on the microstructure and mechanical properties of additively manufactured Ti-6Al-4V alloy, J. Alloys Compd. 735 (2018) 1562-1575. [CrossRef] [Google Scholar]
  14. H. Attar, M. Bönisch, M. Calin, L.-C. Zhang, S. Scudino, J. Eckert, Selective laser melting of in situ titanium—titanium boride composites: Processing, microstructure and mechanical properties, Acta Mater. 76 (2014) 13-22. [CrossRef] [Google Scholar]
  15. Match! Phase Identification from Powder Diffraction, http://www.crystalimpact.com/match/]. [Google Scholar]
  16. B. Wysocki, Bartłomiej, P. Maj, R. Sitek, J. Buhagiar, K. Kurzydłowski, et W. Więszkowski, Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants, Appl. Sci. 7 (2017) 657. [CrossRef] [Google Scholar]
  17. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, International Journal of Fatigue. 48 (2013) 300-307. [CrossRef] [Google Scholar]
  18. B. Vrancken, L. Thijs, J.-P. Kruth, J. Van Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, Journal of Alloys and Compounds. 541 (2012) 177-185. [CrossRef] [Google Scholar]
  19. Yan, Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting, Journal of Alloys and Compounds. 764 (2018) 1056-1071 [CrossRef] [Google Scholar]
  20. X. Yan, S. Yin, C. Chen, C. Huang, R. Bolot, R. Lupoi, M. Kuang, W. Ma, C. Coddet, H. Liao, M. Liu, Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting, Journal of Alloys and Compounds. 764 (2018) 1056-1071. [CrossRef] [Google Scholar]
  21. Tiley, Jaimie “Modeling of Microstructure Property Relationships in Ti-6Al-4V.” Electronic Thesis or Dissertation. Ohio State University, 2003 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.