Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 03034 | |
Number of page(s) | 8 | |
Section | Additive and Near Net Shape Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/202032103034 | |
Published online | 12 October 2020 |
Laser polishing of titanium surfaces obtained by additive manufacturing process
Institut de Recherche en Génie Civil et Mécanique UMR CNRS 6183, Centrale Nantes, Nantes, France
Additive Manufacturing (AM) surfaces are composed by different textures and high roughness values which tend to limit its functionalities. Laser polishing process is enabling to smooth surfaces by material melting, change surface texture and decrease surface roughness (Sa). Based on a five axes machine, which consist of milling and Laser Metal Deposition (LMD) processes, the machine is additionally integrating laser polishing process on the same architecture. This paper aims at study laser polishing of laser metal deposition of titanium surfaces. LMD of titanium surfaces are composed by chaotic texture directly induced by the physical phenomenon of the process in use. Laser polishing process (LP) has an impact on the final surface regarding a multi-scale approach. The determined operating parameters and path strategy of laser polishing process decreases surface roughness by 78% and allow smoothing the initial chaotic texture. A polished surface roughness of 6.01 μm was obtained from an initial of 27.6μm.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.