Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 02006
Number of page(s) 17
Section Keynote Lectures
Published online 12 October 2020
  1. Kraft EH. Summary of emerging titanium cost reduction technologies. A Study Performed US Dep. Energy Oak Ridge Natl. Lab. Subcontract 4000023694. Vancouver WA; 2004. [Google Scholar]
  2. Fray DJ. Novel methods for the production of titanium. Int. Mater. Rev. 2008; 53: 317-325. [Google Scholar]
  3. Fang ZZ, Paramore JD, Sun P, et al. Powder metallurgy of titanium – past, present, and future. Int. Mater. Rev. 2017; 0: 1-53. [Google Scholar]
  4. Jackson M, Dring K. A review of advances in processing and metallurgy of titanium alloys. Mater. Sci. Technol. 2006; 22: 881-887. [Google Scholar]
  5. Inoue K. Electric-discharge sintering. 1966. [Google Scholar]
  6. Orrù R, Licheri R, Locci AM, et al. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R. 2009; 63: 127-287. [Google Scholar]
  7. Anselmi-Tamburini U, Groza JR. Critical assessment: electrical field/current application - a revolution in materials processing/sintering? Mater. Sci. Technol. 2017; 33: 1855-1862. [Google Scholar]
  8. Grasso S, Sakka Y, Maizza G. Electric current activated/assisted sintering ( ECAS ): a review of patents 1906-2008. Sci. Technol. Adv. Mater. 2009; 10: 053001. [Google Scholar]
  9. Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 2006; 41: 763-777. [Google Scholar]
  10. Munir ZA, Quach D V., Ohyanagi M. Electric current activation of sintering: A review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 2011; 94: 1-19. [Google Scholar]
  11. Suarez M, Fernandez A, Menendez JL, et al. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. In: Ertuğ B, editor. Sinter. Appl. InTech; 2013. p. 319-342. [Google Scholar]
  12. Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014; 16: 830-849. [Google Scholar]
  13. Kelly JP, Graeve OA. Spark Plasma Sintering as an Approach to Manufacture Bulk Materials: Feasibility and Cost Savings. Jom. 2015; 67: 29-33. [Google Scholar]
  14. A. Olevsky E, Dudina D. Field-Assisted Sintering: Science and Applications. Field-Assisted Sinter. Sci. Appl. 2018. [Google Scholar]
  15. Weston NS, Thomas B, Jackson M. Processing metal powders via field assisted sintering technology (FAST): A critical review. Mater. Sci. Technol. [Google Scholar]
  16. Eriksson M, Shen Z, Nygren M. Fast densification and deformation of titanium powder. Powder Metall. 2005; 48: 231-236. [Google Scholar]
  17. Ertorer O, Topping TD, Li Y, et al. Nanostructured Ti Consolidated via Spark Plasma Sintering. Metall. Mater. Trans. A. 2011; 42: 964-973. [Google Scholar]
  18. Pascu CI, Gingu O, Rotaru P, et al. Bulk titanium for structural and biomedical applications obtaining by spark plasma sintering (SPS) from titanium hydride powder. J. Therm. Anal. Calorim. 2012; 103-105. [Google Scholar]
  19. Sharma B, Vajpai SK, Ameyama K. Preparation of strong and ductile pure titanium via two-step rapid sintering of TiH2powder. J. Alloys Compd. 2016; 683: 51-55. [Google Scholar]
  20. Zadra M, Casari F, Girardini L, et al. Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering. Powder Metall. 2008; 51: 59-65. [Google Scholar]
  21. Weston NS, Derguti F, Tudball A, et al. Spark plasma sintering of commercial and development titanium alloy powders. J. Mater. Sci. 2015; 50: 4860-4878. [Google Scholar]
  22. Shon JH, Song IB, Cho KS, et al. Effect of particle size distribution on microstructure and mechanical properties of spark-plasma-sintered titanium from CP-Ti powders. Int. J. Precis. Eng. Manuf. 2014; 15: 643-647. [Google Scholar]
  23. Menapace C, Vicente N, Molinari A, et al. Hot forging of Ti-6Al-4V alloy preforms produced by spark plasma sintering of powders. Powder Metall. 2013; 56: 102-110. [Google Scholar]
  24. Weston NS, Jackson M. FAST-forge - A new cost-effective hybrid processing route for consolidating titanium powder into near net shape forged components. J. Mater. Process. Technol. 2017; 243: 335-346. [Google Scholar]
  25. Long Y, Zhang H, Wang T, et al. High-strength Ti-6Al-4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Mater. Sci. Eng. A. 2013; 585: 408-414. [Google Scholar]
  26. Crosby K, Shaw LL, Estournes C, et al. Enhancement in Ti–6Al–4V sintering via nanostructured powder and spark plasma sintering. Powder Metall. 2014; 57: 147-154. [Google Scholar]
  27. Long Y, Wang T, Zhang HY, et al. Enhanced ductility in a bimodal ultrafine-grained Ti-6Al-4V alloy fabricated by high energy ball milling and spark plasma sintering. Mater. Sci. Eng. A. 2014; 608: 82-89. [Google Scholar]
  28. Vajpai SK, Ota M, Watanabe T, et al. The Development of High Performance Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal Grain Size Distribution. Metall. Mater. Trans. A. 2014; 46: 903-914. [Google Scholar]
  29. Calvert E, Wynne B, Weston NS, et al. Thermomechanical processing of a high strength metastable beta titanium alloy powder, consolidated using the low-cost FAST-forge process. J. Mater. Process. Technol. 2018; 254: 158-170. [Google Scholar]
  30. Yang YF, Imai H, Kondoh K, et al. Enhanced Homogenization of Vanadium in Spark Plasma Sintering of Ti-10V-2Fe-3Al Alloy from Titanium and V-Fe-Al Master Alloy Powder Blends. JOM. 2017; 69: 663-668. [Google Scholar]
  31. Lei Z, Zhang H, Zhang E, et al. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching. Mater. Sci. Eng. C. 2018; 92: 121-131. [Google Scholar]
  32. Rajamallu K, Kodli BK, Rajendran A, et al. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application. Mater. Sci. Eng. C. 2019; 94: 619-627. [Google Scholar]
  33. Mompiou F, Tingaud D, Chang Y, et al. Conventional vs harmonic-structured β-Ti-25Nb-25Zr alloys: A comparative study of deformation mechanisms. Acta Mater. 2018; 161: 420-430. [Google Scholar]
  34. Lu X, Sun B, Zhao TF, et al. Microstructure and mechanical properties of spark plasma sintered Ti-Mo alloys for dental applications. Int. J. Miner. Metall. Mater. 2014; 21: 479-486. [Google Scholar]
  35. Bambach M, Emdadi A, Sizova I, et al. Isothermal forging of titanium aluminides without beta-phase — Using non-equilibrium phases produced by spark plasma sintering for improved hot working behavior. Intermetallics. 2018; 101: 44-55. [Google Scholar]
  36. Chen YY, Yu HB, Zhang DL, et al. Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy. Mater. Sci. Eng. A. 2009; 525: 166-173. [Google Scholar]
  37. Liu HW, Bishop DP, Plucknett KP. Densification behaviour and microstructural evolution of Ti-48Al consolidated by spark plasma sintering. J. Mater. Sci. 2017; 52: 613-627. [Google Scholar]
  38. Martins D, Grumbach F, Simoulin A, et al. Spark plasma sintering of a commercial TiAl 48-2-2 powder: Densification and creep analysis. Mater. Sci. Eng. A. 2018; 711: 313-316. [Google Scholar]
  39. Voisin T, Monchoux J, Hantcherli M, et al. Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering. Acta Mater. 2014; 73: 107-115. [Google Scholar]
  40. Jabbar H, Monchoux JP, Thomas M, et al. Microstructures and deformation mechanisms of a G4 TiAl alloy produced by spark plasma sintering. Acta Mater. 2011; 59: 7574-7585. [Google Scholar]
  41. Trzaska Z, Couret A, Monchoux JP. Spark plasma sintering mechanisms at the necks between TiAl powder particles. Acta Mater. 2016; 118: 100-108. [CrossRef] [Google Scholar]
  42. Voisin T, Durand L, Karnatak N, et al. Temperature control during Spark Plasma Sintering and application to up-scaling and complex shaping. J. Mater. Process. Technol. 2013; 213: 269-278. [Google Scholar]
  43. Voisin T, Monchoux J-P, Thomas M, et al. Mechanical Properties of the TiAl IRIS Alloy. Metall. Mater. Trans. A. 2016; 47: 6097-6108. [Google Scholar]
  44. Voisin T, Monchoux J-P, Perrut M, et al. Obtaining of a fine near-lamellar microstructure in TiAl alloys by Spark Plasma Sintering. Intermetallics. 2016; 71: 88-97. [Google Scholar]
  45. Voisin T, Monchoux J-P, Durand L, et al. An Innovative Way to Produce γ-TiAl Blades: Spark Plasma Sintering. Adv. Eng. Mater. 2015; 17: 1408-1413. [Google Scholar]
  46. Savich V V. Porous Materials From Titanium Powders : Past, Present, and Future. Powder Metall. Met. Ceram. 2014; 52: 632-643. [CrossRef] [Google Scholar]
  47. Nicula R, Lüthen F, Stir M, et al. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Biomol. Eng. 2007; 24: 564-567. [Google Scholar]
  48. Yamanoglu R, Gulsoy N, Olevsky EA, et al. Production of porous Ti5Al2.5Fe alloy via pressureless spark plasma sintering. J. Alloys Compd. 2016; 680: 654-658. [Google Scholar]
  49. Zhang F, Otterstein E, Burkel E. Spark plasma sintering, microstructures, and mechanical properties of macroporous titanium foams. Adv. Eng. Mater. 2010; 12: 863-872. [Google Scholar]
  50. Quan Y, Zhang F, Rebl H, et al. Ti6Al4V foams fabricated by spark plasma sintering with post-heat treatment. Mater. Sci. Eng. A. 2013; 565: 118-125. [Google Scholar]
  51. Daoush WMRM, Park HS, Inam F, et al. Microstructural and Mechanical Characterization of Ti-12Mo-6Zr Biomaterials Fabricated by Spark Plasma Sintering. Metall. Mater. Trans. A. 2014; 46: 1385-1393. [Google Scholar]
  52. Munir KS, Zheng Y, Zhang D, et al. Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater. Sci. Eng. A. 2017; 688: 505-523. [Google Scholar]
  53. Decker S, Lindemann J, Krüger L. Metal matrix composites based on Ti-6242 synthesized by Spark Plasma Sintering. Mater. Sci. Eng. A. 2018; 732: 35-40. [Google Scholar]
  54. Calvert EL, Knowles AJ, Pope JJ, et al. Novel high strength titanium-titanium composites produced using field-assisted sintering technology (FAST). Scr. Mater. 2019; 159: 51-57. [Google Scholar]
  55. Ghesmati Tabrizi S, Babakhani A, Sajjadi SA, et al. Microstructural aspects of in-situ TiB reinforced Ti-6Al-4V composite processed by spark plasma sintering. Trans. Nonferrous Met. Soc. China (English Ed. 2015; 25: 1460-1467. [Google Scholar]
  56. Grützner S, Krüger L, Schimpf C, et al. Microstructure and Mechanical Properties of In Situ TiB/TiC Particle-Reinforced Ti-5Al-5Mo-5V-3Cr Composites Synthesized by Spark Plasma Sintering. Metall. Mater. Trans. A. 2018; 49: 5671-5682. [Google Scholar]
  57. Ozerov M, Klimova M, Sokolovsky V, et al. Evolution of microstructure and mechanical properties of Ti/TiB metal-matrix composite during isothermal multiaxial forging. J. Alloys Compd. 2019; 770: 840-848. [Google Scholar]
  58. Lagos MA, Agote I, Atxaga G, et al. Fabrication and characterisation of Titanium Matrix Composites obtained using a combination of Self propagating High temperature Synthesis and Spark Plasma Sintering. Mater. Sci. Eng. A. 2016; 655: 44-49. [Google Scholar]
  59. Miriyev A, Stern A, Tuval E, et al. Titanium to steel joining by spark plasma sintering (SPS) technology. J. Mater. Process. Technol. 2013; 213: 161-166. [Google Scholar]
  60. Naveen Kumar N, Janaki Ram GD, Bhattacharya SS, et al. Spark Plasma Welding of Austenitic Stainless Steel AISI 304L to Commercially Pure Titanium. Trans. Indian Inst. Met. 2015; 68: 289-297. [Google Scholar]
  61. He D, Fu Z, Wang W, et al. Temperature-gradient joining of Ti–6Al–4V alloys by pulsed electric current sintering. Mater. Sci. Eng. A. 2012; 535: 182-188. [Google Scholar]
  62. Pope JJ, Calvert EL, Weston NS, et al. FAST-DB: A novel solid-state approach for diffusion bonding dissimilar titanium alloy powders for next generation critical components. J. Mater. Process. Technol. 2019; [Google Scholar]
  63. Fujii T, Tohgo K, Iwao M, et al. Fabrication of alumina-titanium composites by spark plasma sintering and their mechanical properties. J. Alloys Compd. 2018; 744: 759-768. [Google Scholar]
  64. Martin G, Fabrègue D, Mercier F, et al. Coupling electron beam melting and spark plasma sintering: A new processing route for achieving titanium architectured microstructures. Scr. Mater. 2016; 122: 5-9. [Google Scholar]
  65. Voisin T, Monchoux J-P, Couret A. Near-Net Shaping of Titanium-Aluminum Jet Engine Turbine Blades by SPS: Advances in Processing and Applications. 2019. p. 713-737. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.