Open Access
Issue
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 02002
Number of page(s) 7
Section Keynote Lectures
DOI https://doi.org/10.1051/matecconf/202032102002
Published online 12 October 2020
  1. 2014-2018 FORGING BUSINESS OUTLOOK, https://www.forgingmagazine.com/ [Google Scholar]
  2. Технический отчет. Неопубликованная работа. [Google Scholar]
  3. Leder M.O., Tetyuhin V.V., Volkov A.V., et al. Adapted-Alloyed High-Strength VST2 Alloy: Structure, Properties. AEROMAT 2017, Charleston, South Carolina, April, 2017 [Google Scholar]
  4. http://www.nanshanforge.com, https://www.siempelkamp.com [Google Scholar]
  5. https://www.otto-fuchs.com/en/business-areas/aerospace-industry/asg-group-60k.html [Google Scholar]
  6. https://www.vsmpo.ru [Google Scholar]
  7. D. Lazorkin. High perf ormance thechnology and equpment ..., ITA2018 [Google Scholar]
  8. Wang X.X., Zhan, M., Fu M.W., Gao P.F., Guo, J., Ma, F., 2018. Microstructure evolution of Ti-6Al-2Zr-1Mo-1V alloy and its mechanism in multi-pass flow forming. Journal of Materials Processing Technology 261, 86-97. df [CrossRef] [Google Scholar]
  9. Glyn Ellis, 4D eagle: the new gauge from Kocks for bar and wire rod quality assurance, Titanium USA 20 17 [Google Scholar]
  10. McAndrew A.R., Alvarez Rosales, M., Colegrove P.A., et al, 2018. Interpass rolling of Ti-6Al-4V w ire + arc additively manufactured features for microstructural refinement. Additive Manufacturing 21, 340-349. [Google Scholar]
  11. US 2017 / 0306467 A1 Oct.26, 2017 [Google Scholar]
  12. US 2015/0013144 A1 Jan. 15, 2015 [Google Scholar]
  13. Semiatin S.L., Kobryn P.A., et a l., 2001. Plastic flow and microstructure evolution during thermomechanical processing of laser-deposited Ti-6Al-4V preforms. Metallurgical and Materials Transactions A 32, 1801-1811. [Google Scholar]
  14. US 2018 / 0347003 A1 Dec. 6, 2018 [Google Scholar]
  15. Smarsly, W., 2016. Status of Titanium Aluminide for Aero Engine Applications, Titanium Europe 2016, Paris, France. [Google Scholar]
  16. Z hang, D.-W., Fan, X.-G., 2018. Review on intermittent local loading forming of large-size complicated component: deformation characteristics. The International Journal of Advanced Manufacturing Technology 99, 1427-1448. [Google Scholar]
  17. Fan X.G., Yang, H., Gao P.F., 2014. Through-process macro–micro finite element modeling of local loading forming of large-scale complex titanium alloy component for microstructure prediction. Journal of Materials Processing Technology 214, 253-266. ап [Google Scholar]
  18. de Oliveira, M., Ward, J., Garwood D.R., Wallis R.A., 2002 Quenching of aerospace forgings from high temperatures using air-assisted, atomized water sprays. Journal of Materials Engineering and Performance 6., 11, 80-85. [CrossRef] [Google Scholar]
  19. Venkatesh, V., Wilson, A., Kamal, M., Thomas, M., Lambert, D., 2009. Computational modeling in the primary processing of titanium: A review. JOM 61, 45-50. [Google Scholar]
  20. Fan X.G., Yang, H., Gao P.F., 2014. Through-process macro–micro finite element modeling of local loading forming of large-scale complex titanium alloy component for microstructure prediction. Journal of Materials Processing Technology 214, 253-266. [Google Scholar]
  21. Fan X.G., Yang, H., Gao P.F., 2014. Through-process macro–micro finite element modeling of local loading forming of large-scale complex titanium alloy component for microstructure prediction. Journal of Materials Processing Technology 214, 253-266. [Google Scholar]
  22. Kim J.H., Reddy N.S., Yeom J.T., Hong J.K., Lee C.S., Park, N.-K., 2009. Microstructure prediction of two-phase titanium alloy during hot forging using artificial neural networks and FE simulation. Metals and Materials International 15, 427-437. [CrossRef] [Google Scholar]
  23. Y. Ito, H. Takamatsu, K. Kinoshita, and K. Steel, 2015, #x2018;Technologies for reliable titanium alloy forgings focusing on ultrasonic inspection in aerospace industry’, TiUSA 2015. [Google Scholar]
  24. Salem A.A., Shaffer J.B., Satko D.P., Semiatin S.L., Kalidindi S.R., 2014. Workflow for integrating mesoscale heterogeneities in materials structure with process simulation of titanium alloys. Integrating Materials and Manufacturing Innovation 3. [Google Scholar]
  25. M.G. Glavicic, T. Morton1, T. Broderick et al, 2016, PROGRESS IN THE ADVANCED TITANIUM MICROSTRUCTURE AND MODELING PROGRAM, Proceedings of the 13th World Conference on Titanium, 1867-1873 [Google Scholar]
  26. Seshacharyulu, T., Medeiros S.C., Frazier W.G., Prasad Y.V.R.K., 2002. Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Materials Science and Engineering: A 325, 112-125. [Google Scholar]
  27. Dikovits, M., Poletti, C., Warchomicka, F., 2014. Deformation Mechanisms in the Near-β Titanium Alloy Ti-55531. Metallurgical and Materials Transactions A 45, 1586-1596. [Google Scholar]
  28. Nie, X., Hu, Z., Liu, H., Yi, D., et. al. 2014. High tem perature deformation and creep behavior of Ti–5Al–5Mo–5V– 1Fe–1Cr alloy. Materials Science and Engineering: A 613, 306-316. [Google Scholar]
  29. Tamirisakandala, S., Medeiros S.C., Frazier W.G., Prasad Y.V.R, 2001. Strain-Induced Porosity during Cogging of Extra-Low Interstitial Grade Ti-6Al-4V. Journal of Materials Engineering and Performance 10, 125-130. [CrossRef] [Google Scholar]
  30. X.G. Fan, H. Yang, P.F. Gao. Deformation behavior and microstructure evolution in multista ge hot working of TA15 titanium alloy: on the role of recrystallization, J Mater Sci (2011) 46: 6018-6028 sdf [Google Scholar]
  31. R. Julien, V. Velay, V. Vidal, Y. Dahan, R. Forestier, F. Rézaï-Aria, Tensile behavio ur of high temperature forged Ti-6Al-4V during in-situ heat treatments, Materials Letters (2017) [Google Scholar]
  32. R. Julien, V. Velay, V. Vidal, Y. Dahan, R. Forestier, F. R«eza¬õ-Aria, Characterization and modeling of forged Ti-6Al-4V Titanium alloy with microstructural consid-erations during quenching process, International Journal of Mechanical Sciences (2018), [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.