Open Access
MATEC Web Conf.
Volume 314, 2020
International Cross-Industry Safety Conference (ICSC) – International Symposium on Aircraft Technology, MRO and Operations (ISATECH) (ICSC-ISATECH 2019)
Article Number 01006
Number of page(s) 15
Section International Cross-Industry Safety Conference
Published online 29 May 2020
  1. D’Andrea, A., and Scorcelletti, F., “Enhanced numerical simulations of helicopter landing manoeuvres in brownout conditions,” American Helicopter Society International 66th Annual Forum Proceedings, Phoenix, AZ, 2010. [Google Scholar]
  2. Taskgroup, R., “Rotary-wing brownout mitigation: technologies and training,” Tech. Rep. RTO-TR-HFM-162, NATO Sci.Technol. Org., 2010. [Google Scholar]
  3. Mapes, P., Kent, R., and Wood, R., “DoD helicopter mishaps FY85-05: findings and recommendations,” US Air Force, 2008. [Google Scholar]
  4. Lee, T. E., Leishman, J. G., and Ramasamy, M., “Fluid dynamics of interacting blade tip vortices with a ground plane,” Journal of the American Helicopter Society, Vol. 55, No. 2, 2010, pp. 22005-22005. [CrossRef] [Google Scholar]
  5. CAA, “CAP 490: Manual of Air Traffic Services Part 1,” 2015. [Google Scholar]
  6. Garcia-Dorado, I., Aliaga, D. G., Bhalachandran, S., Schmid, P., and Niyogi, D., “Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models,” ACM Transactions on Graphics (TOG), Vol. 36, No. 2, 2017, p. 21. [CrossRef] [Google Scholar]
  7. Steijl, R., Barakos, G., and Badcock, K., “A framework for CFD analysis of helicopter rotors in hover and forward flight,” International journal for numerical methods in fluids, Vol. 51, No. 8, 2006, pp. 819-847. [CrossRef] [Google Scholar]
  8. Lawson, S., Woodgate, M., Steijl, R., and Barakos, G., “High performance computing for challenging problems in computational fluid dynamics,” Progress in Aerospace Sciences, Vol. 52, 2012, pp. 19-29. [CrossRef] [Google Scholar]
  9. Osher, S., and Chakravarthy, S., “Upwind schemes and boundary conditions with applications to Euler equations in general geometries,” Journal of Computational Physics, Vol. 50, No. 3, 1983, pp. 447-481. [CrossRef] [Google Scholar]
  10. Roe, P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of computational physics, Vol. 43, No. 2, 1981, pp. 357-372. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  11. Van Leer, B., “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” Journal of computational Physics, Vol. 32, No. 1, 1979, pp. 101-136. [NASA ADS] [CrossRef] [Google Scholar]
  12. Jarkowski, M., Woodgate, M., Rokicki, J., and Barakos, G., “Towards consistent hybrid overset mesh methods for rotorcraft CFD,” 2011. [Google Scholar]
  13. Steijl, R., and Barakos, G., “Sliding mesh algorithm for CFD analysis of helicopter rotor–fuselage aerodynamics,” International journal for numerical methods in fluids, Vol. 58, No. 5, 2008, pp. 527-549. [CrossRef] [Google Scholar]
  14. Silva, M., and Riser, R., “CH-47D tandem rotor outwash survey,” AHS 67th Annual Forum, 2011. [Google Scholar]
  15. Preston, J. R., Troutman, S., Keen, E., Silva, M., Whitman, N., Calvert, M., Cardamone, M., Moulton, M., and Ferguson, S. W.,“Rotorwash Operational Footprint Modeling,” Tech. rep., Missile Research Development and Engineergin Center Redstone Arsenal Al Missile Guidance Directorate, 2014. [Google Scholar]
  16. “Vertipedia,”, Accessed: 23-09-2019. [Google Scholar]
  17. Alfred, J., Celi, R., and Leishman, J. G., “Flight Path Optimization for Brownout Mitigation Using a High-Fidelity Simulation Model,” Journal of the American Helicopter Society, Vol. 62, No. 3, 2017, pp. 1-15. [CrossRef] [Google Scholar]
  18. Wachspress, D., Whitehouse, G., Keller, J., Yu, K., Gilmore, P., Dorsett, M., and McClure, K., “A high fidelity brownout model for real-time flight simulations and trainers,” 2009, pp. 278-301. [Google Scholar]
  19. Phillips, C., Kim, H. W., and Brown, R. E., “The flow physics of helicopter brownout,” 66th American Helicopter Society Forum: Rising to New Heights in Vertical Lift Technology, 2010. [Google Scholar]
  20. Ghosh, S., Lohry, M. W., and Rajagopalan, R. G., “Rotor configurational effect on rotorcraft brownout,” 28th AIAA Applied Aerodynamics Conference, 2010, p. 4238. [Google Scholar]
  21. Syal, M., Govindarajan, B., and Leishman, J., “Mesoscale sediment tracking methodology to analyze brownout cloud developments,” 66th Annual Forum of the American Helicopter Society, Phoenix, AZ, 2010, pp. 11-13. [Google Scholar]
  22. Kutz, B., Günther, T., Rumpf, A., and Kuhn, A., “Numerical examination of a model rotor in brownout conditions,” 2014, pp. 2450-2461. [Google Scholar]
  23. Tanner, P. E., “Photogrammetric characterization of a brownout cloud,” 2011. [Google Scholar]
  24. Rovere, F., Barakos, G., and Steijl, R., “CFD validation of a micro-rotor in grond effect,” 45th European Rotorcraft Forum, CFAS, 2019. [Google Scholar]
  25. Kalra, T. S., Lakshminarayan, V. K., and Baeder, J. D., “CFD validation of micro hovering rotor in ground effect,” American Helicopter Society 66th Annual Forum Proceedings, Citeseer, 2010. [Google Scholar]
  26. Hunt, J. C., Wray, A. A., and Moin, P., “Eddies, streams, and convergence zones in turbulent flows,” 1988. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.