Open Access
Issue
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 05015
Number of page(s) 19
Section Modelling and Simulation
DOI https://doi.org/10.1051/matecconf/202030905015
Published online 04 March 2020
  1. LV quan, WANG wei, HAN shui, et al. A new method for wind power curtailment based on analysis of system regulation capacity[J]. Power System Technology,2013,37(7): 1888–1894. [Google Scholar]
  2. Guiding Opinions of the General Office of the State Council on Accelerating the Construction of Electric Vehicle Charging Infrastructure[EB/OL]. 2015[2015-10-27]. http://www.gov.cn/gongbao/content/2015-10/09/content_10214.htm. [Google Scholar]
  3. BAO yueshuang, HUANG qilong, QIU zhifeng, at al. Multi-time Scale Dispatching Strategy for EV Charging Considering Wind Power[A]. Control Conference(CCC), 2017 36th Chinese: 2978–2984. [Google Scholar]
  4. ZHAO Junhua, WEN fushuan, and XUE yusheng, Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators, Automation electric power system, 2010, (20): 22–29. [Google Scholar]
  5. WANG hui, WEN fushuan, XIN jianbo, et al. Chargingand discharging characteristics of electric vehicles as well as their impacts on distribution systems[J]. Journal of North China Electric Power University, 2011,38(5): 17–24. [Google Scholar]
  6. YAO weifeng, ZHAO junhua, WEN fushuan, et al. A charging and discharging dispatching strategy for electric vehicle based on bi=level optimization[J]. Automation of Electric Power Systems, 2012, 36(11): 30–36. [Google Scholar]
  7. ZHAN Kaiqiao, SONG Yonghua, HUA Zechun, et al. Coordination of Electric Vehicle Charging to Minimize Active Power Losses[J]. Proceedings of the CSEE, 2012, 32(31): 11–18. [Google Scholar]
  8. WANG Xifan, SHAO Chengcheng, WANG Xiuli, et al. Survey of electric vehicle charging load and dispatchcontrol strategies[J]. Proceedings of the CSEE, 2013, (01): 1–10. [Google Scholar]
  9. PAN Zhenning, ZHANG Xiaoshun, YU Tao, et al. Hierarchical real-time optimized dispatching for large-scale clusters of electric vehicles[J]. Automation of electricpower systems, 2017, 41(16): 96–104. [Google Scholar]
  10. LI Huiling, BAI Xiaomin, TAN Wen, et al. Coordination of plug-in hybrid electric vehicles and distributed generation[J]. Power System Technology, 2013, 37(08): 2108–2115. [Google Scholar]
  11. Q.S.Jia,J.X.Shen,Z.B.Xu,andX.H.Guan, Simulation-based policy improvement for energy management in commerical office building.IEEE Transactions on Smart Grid, 2012,3(4):2211–2223. [CrossRef] [Google Scholar]
  12. D. P. Bertsekas, “Rollout algorithms for discrete optimization: A Survey”, Handbook of Combinatorial Optimization, Springer, 2013. A 19-page expository article providing a summary overview of the subject. [Google Scholar]
  13. D P. Bertsekas, Dynamic programming and optimal control: Volume I. Massachusetts: Athena Scientific, 2005. [Google Scholar]
  14. T.Wu, Q.Yang, Z.Bao, and W.J.Yan, “Coordinated energy dispatching in microgrid with wind power generation and plug-in electric vehicles,” IEEE Trans. Smart Grid, vol.4, no.3, pp. 1453–1463, Sep. 2013. [CrossRef] [Google Scholar]
  15. PAN Zhanghui, GAO Ciwei, LIU Shungui, et al. Research on charging and discharging dispatch of electric vehicles based on demand side discharge bidding[J]. Power System Technology, 2016, 04: 1140–1146. [Google Scholar]
  16. CHEN Heng. Power system steady state analysis[M]. Beijing: The Press of China Power, 2007: 73–75. [Google Scholar]
  17. LIU Libing, LIU Tianqi, ZHANG Tao, et al. Orderly charging and discharging strategy optimization for electric vehicles considering dynamic battery-wear model[J].Automation of Electric Power Systems, 2016, 40(05): 83–90. [Google Scholar]
  18. Nyns Clement K, Haesen E, Driesen J. The impact of charging plug-In hybrid electric vehicles on a residential distribution grid. IEEE Transactions on Power Systems, 2010,25 (1):371–380. [CrossRef] [Google Scholar]
  19. (Sep.21.2017).National WindTechnology.[Online].Available: hppt//www.nrel.gov/midc/nwtc_m2/. [Google Scholar]
  20. S. Shahidinejad, E. Bibeau, and S. Filizadeh.Statistical development of a duty cycle for plug-in vehicles in a North American urban setting using fleet information.IEEE Transactions on Vehicle Technology, 2010,59(8):3710–3719. [CrossRef] [Google Scholar]
  21. T. K. Lee, Z. Bareket, T. Gordon, and Z. S. Filipi.Stochastic modeling for studies of real-world PHEV usage: Driving schedule and daily temporal distributions. IEEE Transactions on Vehicle Technology,2012,61(4):1493–1502. [Google Scholar]
  22. M.H.K. Tushar, C.Assi, M.Maier, and M.F.Uddin, “Smart microgrids: Optimal joint scheduling for electric vehicles and home appliances,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 239–250, Jan. 2014. [CrossRef] [Google Scholar]
  23. (Sep.21,2017).BYDe6.[Online] .Availabl:http://www.byd.com/na/auto/e6.html. [Google Scholar]
  24. (Sep.13,2017).Vertas.V90-3.0MW.[Online].Available:http://vestas.com/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.