Open Access
Issue
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 05016
Number of page(s) 5
Section Modelling and Simulation
DOI https://doi.org/10.1051/matecconf/202030905016
Published online 04 March 2020
  1. J. Gu, Z. Wang, J. Kuen, Recent advances in convolutional neural networks. (2015) arXiv:1512.07108. [Google Scholar]
  2. D.Y. Zhang, Y.X. Chang, L.G. Zhang, SAT-CNN: convolutional neural network framew-ork for remote sensing image classification, Journal of Chinese Computer Systems. 39(4) (2018) 859–864. [Google Scholar]
  3. J. Redmon, S. Divvala, R. Girshick, You Only Look Once: Unified, Real-Time Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2016) 779–788. [Google Scholar]
  4. Z.H. Hu, Y.Y. Yu, Application of deep convolution network in music style recognition, Journal of Chinese Computer Systems. 39(9) (2018) 1932–1936. [Google Scholar]
  5. H. Noh, S. Hong, B. Han, Learning Deconvolution Network for Semantic Segmentation, Proceedings of the IEEE International Conference on Computer Vision. (2015) 1520–1528. [Google Scholar]
  6. O.A.B. Penatti, F.B. Silva, E. Valle, Visual word spatial arrangement for image retrieval and classification, Pattern Recognition. 47(2) (2014) 705–720. [CrossRef] [Google Scholar]
  7. Y. Lecun, L. Bottou, Y. Bengio, Gradient-based learning applied to document recognition, Proceedings of the IEEE. 86(11) (1998) 2278–2324. [Google Scholar]
  8. C. Szegedy, W. Liu, Y. Jia, Going deeper with convolutions, (2014) arXiv:1409.4842,. [Google Scholar]
  9. O. Russakovsky, J. Deng, H. Su, ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision. 115(3) (2015) 211–252. [Google Scholar]
  10. G. Larsson, M. Maire, G. Shakhnarovich, Fractalnet: Ultra-deep neural networks without residuals. (2016) arXiv:1605.07648,. [Google Scholar]
  11. T. Zhang, G.J. Qi, B. Xiao, Interleaved Group Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2017) 4383–4392. [Google Scholar]
  12. R.K. Srivastava, K. Greff, J. Schmidhuber, Training very deep networks. Proceedings of the Conference on Advances in Neural Information Processing Systems. (2015)2368–2376. [Google Scholar]
  13. D. Alexey, B. Alexander, S. Tatyana, S. Natalya, Big Data and Artificial Intelligence for Digital Humanities: An International Master Program via Trans-Eurasian Universities Network, Procedia Computer Science, 101 (2016) 449–451. [Google Scholar]
  14. B. Zhang, Z.H. Fang, H. YE, The Cultivation Pattern and Construction Path of “Artificial Intelligence Educational Talent” in Emerging Engineering Era, Modern Educational Technology. 8 (2019) 113–119. [Google Scholar]
  15. Krizhevsky, Alex, Learning Multiple Layers of Features from Tiny Images. First ed., Master’s thesis, University of Toronto, 2009. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.