Open Access
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 05002
Number of page(s) 12
Section Modelling and Simulation
Published online 04 March 2020
  1. Jones D E H. The stability of the bicycle[J]. Physics Today, 1970, 23(4): 34–40. [CrossRef] [Google Scholar]
  2. Tanaka Y, Murakami T. Self sustaining bicycle robot with steering controller[C]//The 8th IEEE International Workshop on Advanced Motion Control, Kawasaki International Center, Kawasaki, Japan. Kawasaki: IEEE, 2004: 193–197. [Google Scholar]
  3. Kooijman J D G, Meijaard J P, Papadopoulos J M. A bicycle can be self-stable without gyroscopic or caster effects [J]. Science Magazine, 2011, 332(6027): 339–342. [Google Scholar]
  4. Huang Y H, Liao Q Z, Guo L, et al. Simple realization of balanced motions under different speeds for a mechanical regulator-free bicycle robot[J]. Robotica, 2014, 72(9): 1–15. [Google Scholar]
  5. Huang Y H, Liao Q Z, Guo L, et al. Balanced motions realization for a mechanical regulators free and front-wheel drive bicycle robot under zero forward speed[J]. International Journal of Advanced Robotic Systems, 2013, 10(317):1–9. [CrossRef] [Google Scholar]
  6. Li J, Wei S M, Guo L, et al. Adaptive fuzzy control of a front-wheel drive bicycle robot[C]//2016 4th International Conference on Cloud Computing and Intelligence Systems, IEEE, 2016: 113–116. [Google Scholar]
  7. Lee S, Ham W. Self stabilizing strategy in tracking control of unmanned electric bicycle with mass balance[C]//Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland. Lausanne: IEEE, 2002: 2200–2205. [Google Scholar]
  8. Bui T T, Parnichkun M, Le C H. Structure-specified H∞ loop shaping control for balancing of bicycle robots: A particle swarm optimization approach[J]. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2010, 224(7): 857–867. [CrossRef] [Google Scholar]
  9. Liu Y B, Jia C H, Han J H. Dynamics modeling of an unmanned bicycle with parallel mechanism adjusting stability[C]//Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation, Changchun, China. Changchun: IEEE, 2009: 1601–1605. [Google Scholar]
  10. Jin H Z, Yang D C, Liu Z X, et al. A gyroscope-based inverted pendulum with application to posture stabilization of bicycle vehicle[C]//Proceedings of the 2015 IEEE Conference on Robotics and Biomimetics, Zhuhai, China. Zhuhai: IEEE, 2015:2103–2108. [Google Scholar]
  11. Yin S, Yamakita M. Passive velocity field control approach to bicycle robot path following [C]//Proceedings of the SICE Annual Conference, Tsukuba, Japan. Tsukuba: IEEE, 2016: 1654–1659. [Google Scholar]
  12. Kim Y, Kim H, Lee J. Stable control of the bicycle robot on a curved path by using a reaction wheel[J]. Journal of Mechanical Science and Technology, 2015, 29 (5): 2219–2226. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.