Open Access
Issue
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 04007
Number of page(s) 11
Section System Design and Optimization
DOI https://doi.org/10.1051/matecconf/202030904007
Published online 04 March 2020
  1. Li Z, Deng J, Lu R, et al. Trajectory-Tracking Control of Mobile Robot Systems Incorporating Neural-Dynamic Optimized Model Predictive Approach [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 46(6):740–749 [CrossRef] [Google Scholar]
  2. Ma J, Zhang Y, Cichocki A, et al. A Novel EOG/EEG Hybrid Human-Machine Interface Adopting Eye Movements and ERPs: Application to Robot Control [J]. IEEE transactions on bio-medical engineering, 2014, 62(3):876–889. [CrossRef] [Google Scholar]
  3. Minati L, Yoshimura N, Koike Y. Hybrid Control of a Vision-Guided Robot Arm by EOG, EMG, EEG Biosignals and Head Movement Acquired via a Consumer-Grade Wearable Device[J]. IEEE Access, 2016, 4:9528–9541. [CrossRef] [Google Scholar]
  4. Khezri M, Jahed M. Real-time intelligent pattern recognition algorithm for surface EMG signals [J]. BioMedical Engineering OnLine, 2007, 6(1):45. [CrossRef] [Google Scholar]
  5. Veer K, Sharma T. A novel feature extraction for robust EMG pattern recognition [J]. Journal of Medical Engineering & Technology, 2016, 40(4):149–154. [CrossRef] [Google Scholar]
  6. WU L, HUANG P C, BAO G J. Analysis of Surface EMG Signal and Its Application in Rehabilitation Medicine [J]. Electromechanical Engineering, 2011, 28 (11): 1368–1373. [Google Scholar]
  7. BAN S. Study on the Acquisition and Processing of Human Upper Limb Surface EMG Signals [D]. Shenyang: Northeastern University, 2012. [Google Scholar]
  8. Light C M, Chappell P H. Development of a lightweight and adaptable multiple-axis hand prosthesis [J]. Medical Engineering & Physics, 2000, 22 (10):679~684 [CrossRef] [Google Scholar]
  9. M. Zecca, G. Cappiello, F. Sebastiani, et al. Experimental Analysis Of The Proprioceptive and Exteroceptive Sensors of an Underactuated Prosthetic Hand [J]. International Journal of Human-friendly Welfare Robotic Systems. 2003, 4(4):1~10 [Google Scholar]
  10. J. L. Pons, E. Rocon, R. Ceres. The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects [J]. Autonomous Robots. 2004, 16:143–163 [CrossRef] [Google Scholar]
  11. A. Kargov, T. Werner, C. Pylatiuk, et al. Development of a Miniaturised Hydraulic Actuation System for Artificial Hands [J]. Sensors and Actuators A: Physical. 2008, 141(2):548~557 [CrossRef] [Google Scholar]
  12. CHEN L L, LI C J, WANG P. Design and implementation of myoelectric prosthetic hand control system based on MYO and Android [J]. Computer Measurement and Control. 2017, 25 (9): 64–67. [Google Scholar]
  13. Fang Y, Liu H. Robust sEMG electrodes configuration for pattern recognition based prosthesis control[C]. Proceedings of the International Conference on Systems, Man, and Cybernetics. San Diego, United states, Oct 5-8, 2014, Piscataway, NJ: IEEE, 2014:2210–2215. [CrossRef] [Google Scholar]
  14. ZHANG D H. Research on the Electromyographic Control Method of Bionic Manipulator [D]. Shenyang Ligong University. 2013.3. [Google Scholar]
  15. SUN Y K, LI Y, YE N. Research on EEG Signal Analysis Method Based on Different Frequency Sound Stimulation [J]. Life Science Instruments, 2007,5 (7): 23–27. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.