Issue |
MATEC Web Conf.
Volume 77, 2016
2016 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
|
|
---|---|---|
Article Number | 09001 | |
Number of page(s) | 5 | |
Section | Artificial Intelligence | |
DOI | https://doi.org/10.1051/matecconf/20167709001 | |
Published online | 03 October 2016 |
A Neuromotor Device for Reducing Phantom Limb Pain in Individuals with Spinal Cord Injury
1 Department of Mechanical Engineering, Curtin University, Australia
2 School of Physiotherapy and Exercise Science, Curtin University, Australia
Phantom Limb Pain is a disorder that can be experienced by individuals after amputation or spinal cord injury. In spinal cord injury the paralysis or paresis is often bilateral, thus limiting the application of apparent movement as a therapeutic model for phantom limb pain. This project aimed to develop a robotic rehabilitation device that replicated apparent movement to apply the same therapeutic principles with individuals with lower limb phantom pain that have bilateral paralysis of paresis. The proposed device achieved lower limb planar motion of the knee by a six-bar linkage of a single degree of freedom (DOF). It is driven by a linear actuator while the ankle motion is achieved by a gear motor, reaching an effective 70° range of motion for both joints. The system features closed loop control using feedback from surface electromyography sensors, limit switches and position sensors with an Arduino microcontroller as the control unit. This device will be used to further our understanding of the disorder and create opportunities for robot aided treatment for individuals with phantom limb pain as a result of spinal cord injury.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.