Open Access
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 04005
Number of page(s) 8
Section System Design and Optimization
Published online 04 March 2020
  1. B. Fu, L. Chen, Y. Zhou, et al., An improved A* algorithm for the industrial robot path planning with high success rate and short length. Robotics & Autonomous Systems, 106: 26-37, (2018). [Google Scholar]
  2. T. T. Mac, C. Copot, D. T. Tran, et al., A Hierarchical Global Path Planning Approach for Mobile Robots based on Multi-Objective Particle Swarm Optimization. Applied Soft Computing, 68–76, (2017). [Google Scholar]
  3. Z. Jiao, M. Kai, Y. Rong, et al., A path planning method using adaptive polymorphic ant colony algorithm for smart wheel chairs[J]. Journal of Computational Science, 25:50-57, (2018). [CrossRef] [Google Scholar]
  4. M. R. Zeng, L. Xi, A. M. Xiao, The free step length ant colony algorithm in mobile robot path planning[J]. Advanced Robotics, 30(23):1509–1514, (2016). [CrossRef] [Google Scholar]
  5. Y. J. Kim, C. K. Park, K. G. Kim., Gain determination of feedback force for an ultrasound scanning robot using genetic algorithm[J]. International Journal of Computer Assisted Radiology and Surgery, (1):1–11, (2019). [Google Scholar]
  6. Y. Zhang, L. Shuai, H. Guo, A type of biased consensus-based distributed neural network for path planning[J]. Nonlinear Dynamics,1–13, (2017). [Google Scholar]
  7. P. I. Adamu, H. I. Okagbue, P. E. Oguntunde, Fast and Optimal Path Planning Algorithm (FAOPPA) for a Mobile Robot. Wireless Personal Communications, (3): 577–592, (2019). [CrossRef] [Google Scholar]
  8. Z. Han, D. Wang, F. Liu, et al., Multi-AGV path planning with double-path constraints by using an improved genetic algorithm[J]. Plos One, 12(7):17–47, (2017). [Google Scholar]
  9. Y. Zhang, W. Ma, B. Cai, From Zhang Neural Network to Newton Iteration for Matrix Inversion[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(7):1405–1415, (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.