Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 07006 | |
Number of page(s) | 9 | |
Section | Intelligence Algorithms and Application | |
DOI | https://doi.org/10.1051/matecconf/202133607006 | |
Published online | 15 February 2021 |
Research on path planning of multi-rotor UAV based on improved artificial potential field method
1 Nanjing University of Aeronautics and Astronautics, Jiangsu Nanjing 211100, China
* Corresponding author: lzqlys@126.com
UAV needs sensor to fly in an environment with obstacles. However, UAV may not be able to move forward when it encounters a large obstacle, or UAV will be in a dangerous state when the sensor fails briefly which disturbed by the environment factors. In order to solve these problems, the following methods are proposed in this paper. Aiming at the first problem, this paper proposes an improved APF method for path planning, and verified by simulation experiments that this method can find the optimal path. Aiming at the second problem, this paper proposes a solution to expand the range of obstacles and dynamically change the distance in the APF repulsion function. It is verified that the UAV can fly safely within the short time of the sensor problem by simulation experiments. In conclusion, this paper has an important reference value for the application of UAV online dynamic path planning in engineering.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.