Open Access
Issue
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 03008
Number of page(s) 13
Section Smart Algorithms and Recognition
DOI https://doi.org/10.1051/matecconf/202030903008
Published online 04 March 2020
  1. F. Pan, L. F. Wu, Y. X. Du, Z. Hong, Overviews on Protocol Reverse Engineering, Journal of Computer Application Research, 28(2011)2801–2806. [Google Scholar]
  2. X. D. Li, L. Chen, A Survey on Methods of Automatic Protocol Reverse Engineering, in: Seventh International Conference on Computational Intelligence and Security (CIS 2011), Hainan, (2011), pp. 685–689. [Google Scholar]
  3. C. C. Zhang, H. Y. Zhang, Improved K-means Algorithm Based on Density Canopy, Knowledge-Based Systems, 145(2018)289–297. [CrossRef] [Google Scholar]
  4. Y. L. Zhang, Y. J. Zhou, Review of Clustering Algorithms, Journal of Computer Applications, 39(2019)1869–1882. [Google Scholar]
  5. Z. F. Wang, Y. Wu, Unknown Protocol Bit Stream Clustering Based on Improved k-means Algorithm, Journal of Computer Applications, 36(2016)5–8. [Google Scholar]
  6. Y. Yue, F. Z. Men, C. R. Zhang, T. Li, Cluster System for Binary Data Frame, Application Research of Computers, 32(2015)909–911+916. [Google Scholar]
  7. X. Y. Yan, Q. Li, Clustering Algorithm for Binary Protocol Data Frames Combining Feature Dimensionality Reduction and Density Peaks Clustering, Journal of Chinese Computer Systems, 39(2018)2662–2668. [Google Scholar]
  8. N. Liu, J. H. Si, The Analysis Research of Clustering Algorithm Based on PCA, in: 2017 13th IEEE International Conference on Electronic Measurement and Instruments (ICEMI), Yangzhou, (2017), pp. 361–365. [Google Scholar]
  9. F. L. Zhang, H. C. Zhou, J. J. Zhang, Y. Liu, C. R. Zhang, A Protocol Classification Algorithm Based on Improved AGNES, Computer Engineering and Science, 39(2017)796–803. [Google Scholar]
  10. X. Y. Yan, Q. Li, Y. T. Si, A Clustering Algorithm for Binary Protocol Data Frames Based on Principal Component Analysis and Density Peaks Clustering, in: 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, (2017), pp. 1260–1266. [Google Scholar]
  11. R. O. Dud, P. E. Hart, D. G. Stork, Pattern Classification (2nd Edition), John Wiley and Sons., Inc., New York, (2001). [Google Scholar]
  12. Gao, Y. K. Wang, J. Li, Bounds on Covering Radius of Linear Codes with Chinese Euclidean Distance over the Finite Non Chain Ring F2+vF2, Information Processing Letters, 138(2018)22-26. [CrossRef] [Google Scholar]
  13. R. Hogg, E. Tanis, Probability and Statistical Inference (7 edition), Prentice Hall., Inc., Upper Saddle River, (2005). [Google Scholar]
  14. J. P. Qi, Y. W. Yu, L. H. Wang, J. L. Liu, K*-Means: An Effective and Efficient K-Means Clustering Algorithm, in: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), Atlanta, GA, (2016), pp. 242–249. [Google Scholar]
  15. H. B. Shi, M. Xu, A Data Classification Method Using Genetic Algorithm and K-Means Algorithm with Optimizing Initial Cluster Center, in: 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET), Beijing, (2018), pp. 224–228. [CrossRef] [Google Scholar]
  16. S. Y. Tao, H. Y. Yu, Q. Li, Bit-oriented Format Extraction Approach for Automatic Binary Protocol Reverse Engineering, in: IET Communications, 10(2016)709–716. [CrossRef] [Google Scholar]
  17. M. A. Li, D. X. Meng, S. Y. Gu, S. F. Liu, Research and Improvement of DBSCAN Cluster Algorithm, in: 2015 7th International Conference on Information Technology in Medicine and Education (ITME), Huangshan, (2015) pp. 537–540. [Google Scholar]
  18. L. Zhu, J. Zhu, C. M. Bao, L. H. Zhou, C. Y. Wang, B. Kong, Improvement of DBSCAN Algorithm Based on Adaptive Eps Parameter Estimation, in: Proceedings of the 2018 International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, (2018), pp. 27: 1-27:7. [Google Scholar]
  19. A. Sharma, A. Sharma, KNN-DBSCAN: Using K-Nearest Neighbor Information for Parameter-Free Density Based Clustering, in: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, (2017), pp. 787–792. [CrossRef] [Google Scholar]
  20. Z. F. Wang, G. L. Shan, Characteristic Parameters Extraction and Correlation Analysis of Unknown Protocol Bit Streams, in: 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, (2015), pp. 1502–1505. [Google Scholar]
  21. Z. Nazari, D. Kang, M. R. Asharif, Y. Sung S. Ogawa, A new hierarchical clustering algorithm, in : 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, (2015), pp. 148–152. [CrossRef] [Google Scholar]
  22. J. Mohammad, S. E. Faramarz, B. Zahra, combining hierarchical clustering approaches using the PCA method, Expert Systems with Applications,137(2019)1–10. [Google Scholar]
  23. F. Z. Meng, C. R. Zhang, G. Wu, Protocol reverse based on hierarchical clustering and probability alignment from network traces, in: 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), Shanghai, (2019), pp. 443–447. [Google Scholar]
  24. A. Rodriguez, A. Laio, Clustering by Fast Search and Find of Density Peaks, Science, 344(2014)1492–1496. [NASA ADS] [CrossRef] [Google Scholar]
  25. X. Xu, S. F. Ding, T. F. Sun, A Fast Density Peaks Clustering Algorithm Based on Pre-Screening, in: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, (2018), pp. 513–516. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.