Issue |
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
|
|
---|---|---|
Article Number | 03086 | |
Number of page(s) | 6 | |
Section | Digital Signal and Image Processing | |
DOI | https://doi.org/10.1051/matecconf/201817303086 | |
Published online | 19 June 2018 |
Important Location Identification and Personal Location Inference Based on Mobile Subscriber Location Data Preparation of Camera-Ready Contributions to SCITEPRESS Proceedings
College of Electronic Countermeasure, National University of Defense Technology, Hefei, China
As an emerging spatial trajectory data, mobile terminal location data can be widely used to analyze the behavior characteristics and interests of individuals or groups in smart cities, transportation planning and other civil fields. It can also be used to track suspects in anti-terrorism security and public opinion management. Aiming at the problem that it is difficult to determine suitable input parameters of clustering caused by different subscriber location data size and distribution difference, an improved density peak clustering algorithm is proposed and the performance of the improved algorithm is verified on the UCI data set. Firstly the important location is identified by the proposed algorithm, and the personal location is further inferred by the algorithm based on the subscriber's schedule and maximum cluster. Then, the algorithm adopts Google's inverse geocoding technology to obtain the semantic names corresponding to the coordinate points, and introduces the natural language processing technology to achieve word frequency statistics and keyword extraction. The simulation results based on the Geolife data set show that the algorithm is feasible for identifying important locations and inferring personal locations.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.