Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 19004
Number of page(s) 8
Section Welding
DOI https://doi.org/10.1051/matecconf/201930019004
Published online 02 December 2019
  1. ASTM E399-17. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials, ASTM International (2017) [Google Scholar]
  2. ISO 12135. Metallic materials—Unified method of test for the determination of quasistatic fracture toughness, International Organization for Standardization (2016) [Google Scholar]
  3. ISO 15653. Metallic materials—method of test for the determination of quasistatic fracture toughness of welds, International Organization for Standardization (2018) [Google Scholar]
  4. WES 1108. Standard test method for crack-tip opening displacement (CTOD) fracture toughness measurement, The Japan Welding Engineering Society (2016) [Google Scholar]
  5. WES 1109. Guideline for crack-tip opening displacement (CTOD) fracture toughness test method of weld heat-affected zone, The Japan Welding Engineering Society (1995) [Google Scholar]
  6. K. Arimochi, K. Isaka. A study on pop-in phenomenon in CTOD test for weldment and proposal of assessment method for significance of pop-in, IIW Doc. X-1118-86 (1986) [Google Scholar]
  7. M.G. Dawes, H.G. Pisarski, S.J. Squirrel. Squirrel SJ. Fracture mechanics tests on welded joints, ASTM STP 995k, 191-213 (1989) [Google Scholar]
  8. T. Haze, S. Aihara. Metallurgical factors controlling HAZ toughness in HT50 steels, IIW Doc. IX-1423-86 (1986) [Google Scholar]
  9. K. Satoh, M. Toyoda, F. Minami. Effects of fracture controlling factors on cleavage fracture initiation in specimens with heterogeneity along crack front, Journal of the Japan Welding Society, 50, 743-749 (1981) [in Japanese] [CrossRef] [Google Scholar]
  10. M.F. McGuire, Encyclopedia of Materials: Science and Technology (Elsevier Ltd, 2001) [Google Scholar]
  11. G.T. Camacho, M. Ortiz. Computational modelling of impact damage in brittle materials, International Journal of Solids and Structures, 33, 2899-2938 (1996) [CrossRef] [Google Scholar]
  12. Dassault Systems, Abaqus/Standard, version 6. 14-1 (2014) [Google Scholar]
  13. Dassault Systems, Abaqus/Explicit, version 6. 14-1 (2014) [Google Scholar]
  14. H.W. Swift. Plastic instability under plane stress, Journal of the Mechanics and Physics of Solids, 1, 1-18 (1952) [CrossRef] [Google Scholar]
  15. G.R. Cowper, P.S. Symonds. Strain-hardening and strain-rate effects in the impact loading of cantilever beams, Brown University, Division of Applied Mathematics technical report, 28, (1957) [Google Scholar]
  16. T. Kawabata, A. Inami, S. Aihara. Numerical model of brittle crack propagation considering fracture surface energy on high tensile strength steel—Proposal of numerical model of brittle crack propagation (report 1) –, Journal of the Japan Society of Naval Architects and Ocean Engineers, 16, 77-87 (2012), [in Japanese] [CrossRef] [Google Scholar]
  17. Dassault Systems, Abaqus Analysis User’s guide (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.