Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 18004
Number of page(s) 6
Section Very High Cycle Fatigue
DOI https://doi.org/10.1051/matecconf/201930018004
Published online 02 December 2019
  1. C. Bathias, There is no infinite fatigue life in metallic materials, Fatigue Fract. Eng. Mater. Struct., 22, 559–565, (1999). [Google Scholar]
  2. C. M. Sonsino, Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety, Int. J. Fatigue, 29, 2246–2258, (2007). [CrossRef] [Google Scholar]
  3. C. Bathias, Piezoelectric fatigue testing machines and devices, Int. J. Fatigue, 28, 11, 1438–1445, (2006). [CrossRef] [Google Scholar]
  4. H. Soares, P. Costa, M. Freitas, and L. Reis, Fatigue life assessment of a railway wheel material under HCF and VHCF conditions, MATEC Web Conf., 165, 09003, (2018). [CrossRef] [Google Scholar]
  5. H. Q. Xue, H. Tao, F. Montembault, Q. Y. Wang, and C. Bathias, Development of a three-point bending fatigue testing methodology at 20 kHz frequency, Int. J. Fatigue, 29, 2085–2093, (2007). [CrossRef] [Google Scholar]
  6. C. Brugger, T. Palin-Luc, P. Osmond, and M. Blanc, Gigacycle fatigue behavior of a cast aluminum alloy under biaxial bending: experiments with a new piezoelectric fatigue testing device, 21st Eur. Conf. Fract. ECF21, 2, 96–100, (2016). [Google Scholar]
  7. P. Costa, M. Vieira, L. Reis, A. Ribeiro, and M. de Freitas, New specimen and horn design for combined tension and torsion ultrasonic fatigue testing in the very high cycle fatigue regime, Int. J. Fatigue, 103, 248–257, (2017). [CrossRef] [Google Scholar]
  8. M. Vieira, M. De Freitas, L. Reis, A. M. R. Ribeiro, and M. Da Fonte, Development of a very high cycle fatigue (VHCF) multiaxial testing device, Frat. ed Integrita Strutt., 10, 37, 131–137, (2016). [CrossRef] [Google Scholar]
  9. M. Cremer, M. Zimmermann, and H. J. Christ, High-frequency cyclic testing of welded aluminium alloy joints in the region of very high cycle fatigue (VHCF), Int. J. Fatigue, 57, 120–130, (2013). [CrossRef] [Google Scholar]
  10. Q. Y. Wang, T. Lib, and X. G. Zenga, Gigacycle fatigue behavior of high strength aluminum alloys, Procedia Eng., 2, 1, 65–70, (2010). [CrossRef] [Google Scholar]
  11. R. Baptista, R. A. Cláudio, L. Reis, J. F. A. Madeira, and M. Freitas, Numerical study of in-plane biaxial fatigue crack growth with different phase shift angle loadings on optimal specimen geometries, Theor. Appl. Fract. Mech., 85, 16–25, (2016). [CrossRef] [Google Scholar]
  12. D. Montalvão and A. Wren, Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines, Heliyon, 3, 11, e00466, (2017). [CrossRef] [Google Scholar]
  13. R. Baptista, R. A. Cláudio, L. Reis, J. F. A. Madeira, and M. Freitas, Numerical study of fatigue crack initiation and propagation on optimally designed cruciform specimens, Procedia Struct. Integr., 1, 98–105, (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.